![]()
曲延云
![](/_ts/zwmb2/images/praise.png)
-
教授
博士生导师
硕士生导师
- 出生日期:1972-12-18
- 电子邮箱:3fc75d4944b4d1e01b43ec475a9f1baceb9eadac91a28fd5da37d03d45af64d1259d4cab7cec3d5183fc7531b9e13fc253725ec8d6c2defce51077dc18ec39df240594f235fa84635f4dd1cf5300cece04be97317e36efcb5edb186cd0a4e1a8a2cdeefa2650cef7a3632768620a360f6c9db3e5658fe81833366670523051cc
- 入职时间:1998-08-01
- 所在单位:信息学院
- 学历:博士研究生毕业
- 办公地点:厦门市翔安区厦门大学翔安校区信息学院5号楼402
- 性别:女
- 学位:工学博士学位
- 在职信息:在职
访问量:
-
[31]曲延云.Beyond the Label Itself: Latent Labels Enhance Semi-supervised Point Cloud Panoptic Segmentation.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(2):1245-1253.
-
[32]曲延云.AdaFormer: Efficient Transformer with Adaptive Token Sparsification for Image Super-resolution.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(5):4009-4016.
-
[33]曲延云.SkipDiff: Adaptive Skip Diffusion Model for High-Fidelity Perceptual Image Super-resolution.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(5):4017-4025.
-
[34]曲延云.Efficient Lightweight Image Denoising with Triple Attention Transformer.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(7):7704-7712.
-
[35]曲延云.Learning Task-Aware Language-Image Representation for Class-Incremental Object Detection.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(7):7096-7104.
-
[36]曲延云.CLIP-Guided Federated Learning on Heterogeneous and Long-Tailed Data.Proceedings of the AAAI Conference on Artificial Intelligence,2024,38(13):14955-14963.
-
[37]曲延云.Instance and Category Supervision are Alternate Learners for Continual Learning.Proceedings of the IEEE International Conference on Computer Vision,5573-5582.
-
[38]曲延云.Progressive Contrastive Learning with Multi-Prototype for Unsupervised Visible-Infrared Person Re-identification.arXiv,2024,
-
[39]曲延云.Image Understands Point Cloud: Weakly Supervised 3D Semantic Segmentation via Association Learning.IEEE Transactions on Image Processing,331-1.
-
[40]曲延云.Joint Motion Deblurring and Super-Resolution for Single Image Using Diffusion Model and GAN.IEEE Signal Processing Letters,311-5.