肖理业
-
副教授
博士生导师
硕士生导师
- 电子邮箱:96c6740409a1b4227509a02c9e289d09b5679aa06cde50467d813ff5b7716b1560b7f5d69d9601e2b94356ae9996ef1c9200846b0c12e754a030c3965c2090bfc05551824d8e5a953ff29dc75afa0c602e2975b12145796420ad32c52d9356ff85c23062d271f6b1c17d738ab89a803cd66d4d02c5c79e65250898b5faf5e6ac
- 所在单位:电子科学与技术学院(国家示范性微电子学院)
- 学历:博士研究生毕业
- 办公地点:厦门大学翔安校区文宣楼
- 联系方式:liyexiao16@xmu.edu.cn
- 学位:理学博士学位
- 在职信息:在职
- 毕业院校:电子科技大学
访问量:
-
[21]肖理业.Machine-Learning-Based Inversion Scheme for Super-Resolution Three-Dimensional Microwave Human Brain Imaging.IEEE Antennas and Wireless Propagation Letters,21(12):1-5.
-
[22]肖理业.Substrate-Integrated Cavity-Backed Array With Controlled Mutual Coupling for Wide Scanning.IEEE Antennas and Wireless Propagation Letters,21(4):808-812.
-
[23]肖理业,A Hybrid Neural Network Electromagnetic Inversion Scheme (HNNEMIS) for Super-Resolution 3-D Microwave Human Brain Imaging.IEEE Transactions on Antennas and Propagation,70(8):6277-6286.
-
[24]肖理业.Radial Basis Function Neural Network With Hidden Node Interconnection Scheme for Thinned Array Modeling.IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2019,19(12):2418-2422.
-
[25]肖理业,Efficient Inverse Extreme Learning Machine for Parametric Design of Metasurfaces.IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2019,19(6):992-996.
-
[26]肖理业.Quantitative Electromagnetic Inversion of Irregular Scatterers Based on a Threefold Hybrid Method.IEEE Transactions on Antennas and Propagation,69(12):8664-8674.
-
[27]肖理业.Nonlinear Electromagnetic Inversion of Damaged Experimental Data by a Receiver Approximation Machine Learning Method.IEEE Antennas and Wireless Propagation Letters,20(7):1185-1189.
-
[28]肖理业,Inverse Artificial Neural Network for Multiobjective Antenna Design.IEEE Transactions on Antennas and Propagation,69(10):6651-6659.
-
[29]肖理业,A self-adaptive kernel extreme learning machine for short-term wind speed forecasting.Applied Soft Computing,99
-
[30]肖理业,Combined model with secondary decomposition-model selection and sample selection for multi-step wind power forecasting.Applied Energy,2020,261