Associate professor
Supervisor of Master's Candidates
E-Mail:
Date of Employment:2009-12-14
School/Department:信息学院
Education Level:博士研究生毕业
Business Address:厦门大学翔安校区西部片区6号楼(睿信楼)202室
Gender:Male
Contact Information:yunfengwu@xmu.edu.cn
Degree:Doctor of Engineering (D.Eng.)
Status:在职
Alma Mater:北京邮电大学
Discipline:生物医学工程
信号与信息处理
Academic Honor:
2013 Outstanding talents in the new century
The Last Update Time: ..
Hits:
DOI number:10.3390/s22083055
Journal:Sensors
Abstract:With non-invasive and high-resolution properties, optical coherence tomography (OCT) has been widely used as a retinal imaging modality for the effective diagnosis of ophthalmic diseases. The retinal fluid is often segmented by medical experts as a pivotal biomarker to assist in the clinical diagnosis of age-related macular diseases, diabetic macular edema, and retinal vein occlusion. In recent years, the advanced machine learning methods, such as deep learning paradigms, have attracted more and more attention from academia in the retinal fluid segmentation applications. The automatic retinal fluid segmentation based on deep learning can improve the semantic segmentation accuracy and efficiency of macular change analysis, which has potential clinical implications for ophthalmic pathology detection. This article summarizes several different deep learning paradigms reported in the up-to-date literature for the retinal fluid segmentation in OCT images. The deep learning architectures include the backbone of convolutional neural network (CNN), fully convolutional network (FCN), U-shape network (U-Net), and the other hybrid computational methods. The article also provides a survey on the prevailing OCT image datasets used in recent retinal segmentation investigations. The future perspectives and some potential retinal segmentation directions are discussed in the concluding context.
Co-author:Guidong Bao,Xiaoqian Sang
First Author:Mengchen Lin
Indexed by:Review
Correspondence Author:Yunfeng Wu*
Volume:22
Issue:8
Page Number:3055
Translation or Not:no
Date of Publication:2022-04-15
Included Journals:SCI
Links to published journals:https://doi.org/10.3390/s22083055