Qr code
中文
Yunfeng Wu

Associate professor

Supervisor of Master's Candidates


E-Mail:

Date of Employment:2009-12-14

School/Department:信息学院

Education Level:博士研究生毕业

Business Address:厦门大学翔安校区西部片区6号楼(睿信楼)202室

Gender:Male

Contact Information:yunfengwu@xmu.edu.cn

Degree:Doctor of Engineering (D.Eng.)

Status:在职

Alma Mater:北京邮电大学

Discipline:生物医学工程
信号与信息处理

Academic Honor:

2013   Outstanding talents in the new century

Click:Times

The Last Update Time: ..

Statistical analysis of gait rhythm in patients with Parkinson's disease

Hits:

DOI number:10.1109/TNSRE.2009.2033062

Journal:IEEE Transactions on Neural Systems and Rehabilitation Engineering

Abstract:To assess the gait variability in patients with Parkinson's disease (PD), we first used the nonparametric Parzen-window method to estimate the probability density functions (PDFs) of stride interval and its two subphases (i.e., swing interval and stance interval). The gait rhythm standard deviation (sigma) parameters computed with the PDFs indicated that the gait variability is significantly increased in PD. Signal turns count (STC) was also derived from each outlier-processed gait rhythm time series to serve as a dominant feature, which could be used to characterize the gait variability in PD. Since it was observed that the statistical parameters of swing interval or stance interval were highly correlated with those of stride interval, this article only used the stride interval parameters, i.e., sigma(r) and STC(r), to form the feature vector in the pattern classification experiments. The results evaluated with the leave-one-out cross-validation method demonstrated that the least squares support vector machine with polynomial kernels was able to provide a classification accurate rate of 90.32% and an area (Az) of 0.952 under the receiver operating characteristic curve, both of which were better than the results obtained with the linear discriminant analysis (accuracy: 67.74%, Az : 0.917). The features and the classifiers used in the present study could be useful for monitoring of the gait in PD.

Co-author:Sridhar Krishnan

First Author:Yunfeng Wu*

Indexed by:Article

Volume:18

Issue:2

Page Number:150-158

Translation or Not:no

Date of Publication:2010-04-21

Included Journals:SCI

Links to published journals:https://doi.org/10.1109/TNSRE.2009.2033062