Associate professor
Supervisor of Master's Candidates
E-Mail:
Date of Employment:2009-12-14
School/Department:信息学院
Education Level:博士研究生毕业
Business Address:厦门大学翔安校区西部片区6号楼(睿信楼)202室
Gender:Male
Contact Information:yunfengwu@xmu.edu.cn
Degree:Doctor of Engineering (D.Eng.)
Status:在职
Alma Mater:北京邮电大学
Discipline:生物医学工程
信号与信息处理
Academic Honor:
2013 Outstanding talents in the new century
The Last Update Time: ..
Hits:
DOI number:10.1007/s10439-008-9601-1
Journal:Annals of Biomedical Engineering
Abstract:Knee-joint sounds or vibroarthrographic (VAG) signals contain diagnostic information related to the roughness, softening, breakdown, or the state of lubrication of the articular cartilage surfaces. Objective analysis of VAG signals provides features for pattern analysis, classification, and noninvasive diagnosis of knee-joint pathology of various types. We propose parameters related to signal variability for the analysis of VAG signals, including an adaptive turns count and the variance of the mean-squared value computed during extension, flexion, and a full swing cycle of the leg, for the purpose of classification as normal or abnormal, that is, screening. With a database of 89 VAG signals, screening efficiency of up to 0.8570 was achieved, in terms of the area under the receiver operating characteristics curve, using a neural network classifier based on radial-basis functions, with all of the six proposed features. Using techniques for feature selection, the turns counts for the flexion and extension parts of the VAG signals were chosen as the top two features, leading to an improved screening efficiency of 0.9174. The proposed methods could lead to objective criteria for improved selection of patients for clinical procedures and reduce healthcare costs.
Co-author:Yunfeng Wu
First Author:Rangaraj M. Rangayyan*
Indexed by:Article
Volume:37
Issue:1
Page Number:156-163
Translation or Not:no
Date of Publication:2009-01-01
Included Journals:SCI
Links to published journals:https://doi.org/10.1007/s10439-008-9601-1