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1. Introduction 
Knowledge creation is critical to economic growth (Romer 1990). In reality, however, 

access to knowledge is highly imperfect (Griliches 1957), directly contrasting a key 
assumption in Romer’s seminal endogenous growth model, namely, “anyone engaged in 
research has free access to the entire stock of knowledge”. In fact, knowledge is more likely 
to flow between individuals who are located more closely to each other.1  

The notion that geographic proximity leads to more knowledge spillover has attracted 

much academic attention, as numerous studies find evidence consistent with this conjecture.2 

In this paper, we argue that the travel time between two physical locations is a more 
appropriate measure for proximity than geographic distance (Giroud 2013). Specifically, we 
exploit changes in travel time between metropolitan areas induced by the introduction of new 
flight routes to study whether and how proximity influences knowledge spillovers and 
impacts the volume and direction of future innovation. We combine the patent data from the 
United States Patent and Trademark Office (USPTO) with the airline data from the U.S. 
Department of Transportation (DOT) to assemble a panel data set of over 3 million Core 
Based Statistical Areas (CBSA) pair-year observations (corresponding to 923 unique CBSAs) 
between 1980 and 2010. We focus on patent citations to measure the flow of knowledge from 
the cited patent to the citing patent. The number of citations made by patents invented in 
one metropolitan area to patents invented in another metropolitan area provides a proxy for 

the volume of knowledge flowing from the latter to the former.3  

Our baseline specification employs a (continuous treatment intensity) Difference-in-
Differences (DiD) empirical methodology (De Chaisemartin and d’Haultfoeuille 2018, De 
Chaisemartin and d'Haultfoeuille 2020) to allow for the estimation of the elasticity of 
knowledge flow to travel time reduction. Our results show that a 20% reduction in travel time 
following the introduction of new flight routes increases the patent citation flow between two 

 
1 See Saxenian (1994) and Kerr and Kominers (2010) for studies on the success of Silicon Valley, and Zucker et 
al. (1998) and Zucker et al. (2002) for the study on the rise of biotechnology clusters. 
2 See, e.g., Thompson (2006), Agrawal et al. (2008), and Singh and Marx (2013). 
3 We recognize that patent citations represent only an imperfect measure of knowledge diffusion. First, our 
measure is a proxy for exchanging technological knowledge rather than for diffusions of basic scientific knowledge. 
The latter is more closely related to article citations, although it is not implausible that the two are positively 
correlated and are subject to similar forces in diffusion. Patent inventors face a legal requirement to cite all their 
prior arts, while they also have an economic incentive not to cite irrelevant prior patents to maximize their 
intellectual property rights for protection. In this sense, a patent citation is a more accurate measure of knowledge 
diffusion than article citations (Jaffe et al. 1993). Second, as Porter (1990) emphasizes, much knowledge sharing 
occurs between customers and suppliers, which may be captured more fully by input-output relationships than 
by these citations. 
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CBSAs by 0.5%. Alternative DID specification with a discrete shock variable yields 
qualitatively similar results.  

Our stringent empirical specification overcomes several identification challenges. The 
first potential endogeneity issue is due to some underlying omitted variables at each CBSA-
year level confounding our inference. In particular, local economic conditions at one CBSA 
might be the driving force behind both innovation activities and new airline routes linking it 
to other geographical areas. For example, the burgeoning biotech and healthcare industry in 
Boston might lead to more local investment, more innovative activities, and consequently 
more patents and citations. Meanwhile, realizing Boston’s strong economic performance and 
future potential, airlines might foresee strong travel demands and launch new airline routes 
both to and from Boston. In this case, finding a positive treatment effect of time-reducing new 
flight routes on subsequent innovation could be a spurious outcome of an omitted shock in 
the Boston area. This problem is traditionally difficult to deal with because it is impossible 
for researchers to identify a comprehensive list of possible shocks. We circumvent this issue 
by including a complete set of citation-giving metropolitan area fixed effects by year and 
citation-receiving metropolitan area fixed effects by year, which together completely account 
for all local shocks at the citing CBSA as well as the cited CBSA, regardless of the shocks’ 
origin, format, and magnitude. Such stringent specification is feasible as our observation is 
at the CBSA-pair year level, allowing us to exploit the variations in between-CBSA travel 
time for multiple CBSA pairs associated with a same citing CBSA or a same cited CBSA.  

Another possibility is that some omitted shocks exist at the CBSA-pair level. For 
instance, Amazon has its first and second headquarters in Seattle, Washington, and Crystal 
City, Virginia, respectively. Given its sheer size, Amazon’s presence and employment of a 
large number of people in both cities might simultaneously cause knowledge flow as well as 
direct flights connecting these two places to increase. Unfortunately, we cannot directly 
control for CBSA-pair fixed effects by year, as doing so would completely absorb our main 
independent variable, i.e., between-CBSA travel time. However, as a compromise, we 
alleviate this issue in several ways. First, we include CBSA-pair fixed effects, which would 
help account for time-invariant factors at the CBSA-pair level. For instance, many cities 
might have connections due to a variety of historical, economic, and political reasons. The 
CBSA-pair fixed effects are thus effective at controlling for these slow-moving connections. 
Second, when we estimate the dynamic effects of the introduction of new airline routes, only 
those travel time reductions that happen contemporaneously (i.e., in the same period t) or in 
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the past, as opposed to future reductions in travel time, predict patent citations. This result 
helps alleviate the concern that some trends at the CBSA-pair level leading up to the travel 
time reduction are the root causes of our documented effects. Finally, in robustness checks, 
we re-estimate our regression model but only consider travel time reductions due to new hub 
openings and find similar results. Hub openings usually affect many routes related to an 
airport rather than just one specific metropolitan area pair. As a result, reductions in travel 
time due to hub openings are more likely to be exogenous at the CBSA-pair level because 
these decisions are often predetermined by individual airlines’ existing infrastructure, 
routing systems, and optimization strategies within these firms (Giroud 2013).  

After documenting the positive effect of travel time reduction on cross-region patent 
citations, our next set of analyses investigates the sources of this effect. We guide our 
exploration through the lens of within organizations and across organizations. First, we look 
at whether the increase in citations is mainly occurring in patent citation pairs where the 
citing patents and cited patents share one or more common assignee(s). This could happen 
when a single organization’s different R&D centers cite each other. In addition, we also 
consider the case in which the same inventor moves across CBSA and cite herself when 
patenting again. However, the results consistently show that these do not seem to be where 
the increase in citations is taking place. Most of the increase in patent citations due to travel 
time reduction is across organizational boundaries without inventor overlap. Second, we 
consider inter-organizational patent citations. Because roughly 96% of all assigned patents 
are granted to corporations (Hall et al. 2001), we focus on patent citations that occur among 
firms with different linkages. We specifically consider three types of firm linkages: firms that 
form a joint venture; firms with block holdings in each other; and firms that are vertically 
connected along the supply chain. Our results show that knowledge diffusion in response to 
travel time reduction exists in each of the three groups. Taken together, these results suggest 
that a sizeable portion of the knowledge diffusion we have documented occurs outside of the 
firm boundary, reflecting “spillovers” to others.  
 We then take a closer look at how our documented effects vary in the cross-section. In 
particular, we consider attributes at the city level as well as the patent level. Several patterns 
are noteworthy. First, we find that knowledge diffusion between CBSA pairs that are farther 
away tends to benefit more from travel time reductions. Second, citation-making CBSAs with 
higher absorptive capacity (Cohen and Levinthal 1990) gain more knowledge diffusion from 
travel time reduction. Third, our results are the strongest among the most complex 
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technology classes. Finally, we alternate the lengths of reference windows to count citations, 
and find that proximity is most effective in facilitating the diffusion of new knowledge (within 
6 years). In contrast, the diffusion of dated knowledge is not responsive to travel time 
reduction. Both complex technologies and newly generated technologies are less likely to be 
well codified and more tacit in nature. The latter two results jointly suggest that it is mainly 
the tacit knowledge whose effective learnings are significantly facilitated by reduced travel 
time.  
 We also investigate the implications of reduced travel time on new knowledge creation 

as the advancements in the technological endeavor are enabled by the cumulativeness of 

knowledge when inventors “climb on the shoulders of giants”. We find that better-connected 

CBSAs not only produce more new patents, but these new patents are also more impactful. 
Moreover, new patents produced in CBSA pairs that are better connected evolve towards a 
closer direction in the space of technological classes. 

In the final part of this article, we provide auxiliary evidence that travel time reduction 
makes inventor communications and information acquisition more convenient which 
facilitates the transfer of tacit knowledge. First, we show that a reduction in travel time 
increases the flow of inventors. By tracking a same inventor’ different patents over time, we 
find that reduced travel time significantly increases inventors’ cross-CBSA relocation. 
Although this is only a very noisy and limited measure for inventors’ cross-CBSA traveling, 
it partially accounts for the effects of travel time on patent citations. Second, we show that 
our results are stronger in the early half of our sample periods when convenient nonpersonal 
means of information transmission such as the Internet and video conferencing were not 
available (Agrawal and Goldfarb 2008, Giroud 2013, Panahi et al. 2013). Lastly, we discuss 
why our estimates based on patent citations, a usage of published documents, could 
potentially capture the diffusion of tacit knowledge.  
 Just as Polanyi (1967) puts it, “We know more than we can tell”, tacit knowledge refers 
to knowledge that is hard to codify or information that one knows about but finds it hard to 
tell in a written format. In our setting, a large reduction in travel time increases the 
likelihood of inventors in the affected regions being physically together, exchanging 
important specific knowledge, experience, and know-how through demonstration, 
experiments, or informal story sharing. As previously mentioned, our main effects are the 
strongest in highly complex technological classes and among new knowledge, both of which 
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are characterized by knowledge that is not well codified in nature.   
Although the open publication of patents is intended for facilitating subsequent usage 

of prior inventions, the information disclosed in patents alone is usually insufficient for such 
purpose. Thus, a citation to a prior patent not only reflects the usage of documented contents 
in the patent, but also the usage of undocumented tacit knowledge embedded in it, for which 
convenient communications with relevant inventors are indispensable. As Dosi (1988) points 
out in his seminal work, even in a highly scientific and quantitative field such as mechanical 
engineering, tacit knowledge about “performance of previous generations of machines, their 
typical conditions of use, the productive requirements of the users” is important for 
knowledge generation, but it is not explicitly mentioned in any patent. Access to such know-
how can only be transferred through face-to-face interactions or alternative means such as 
video and audio channels of communication that allow for close interactions with relevant 
inventors.  

Our paper contributes to several strands of literature. This paper first builds on a 
voluminous literature on the determinants of knowledge transfer and innovation. Since the 
seminal work of Jaffe et al. (1993), economists have used patent citations to study how 
proximity influences knowledge spillovers (Thompson 2006, Agrawal et al. 2008, Singh and 
Marx 2013). To separate localized knowledge spillovers from spatial clustering of prior 
patents, researchers tend to match each actual cited patent with a control patent that comes 
from the same technological class and time period and examine whether proximity increases 
the probability of citation beyond what is predicted by the spatial distribution of technologies. 
The sizes and significances of these empirical estimates hinge critically on the degree of 
refinement of the technology class used for matching (Henderson et al. 2005, Thompson and 
Fox-Kean 2005). We contribute to this body of research by examining directly large variations 
in travel time and thus actual changes in physical proximity induced by airlines’ introduction 
of new airline routes. Our stringent empirical specification effectively controls for time-
varying local shocks and advances our understanding of proximity on knowledge spillover 
one step further towards a causal interpretation.  

Another related literature studies firm-level innovation and proposes that many factors 
such as institutional investors (Luong et al. 2017), stock market liberalization (Moshirian et 
al. 2021), and firms’ public status (Bernstein 2015) are important determinants. Relatedly, 
Manso (2011) provides a theoretical foundation for ways to motivate innovation. Specifically, 
he argues that compensation incentives such as stock options combined with long vesting 
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periods, option repricing, etc. can be effectively used to motivate firm innovation. Baranchuk 
et al. (2014) offers some empirical evidence on the combination of incentive schemes that 
leads to better innovation for newly listed public firms. This paper joins the broad discussion 
but focuses on knowledge transfer in the form of innovation through spatially separated 
geographic areas. Our setting allows us to separate the influence of proximity on knowledge 
spillovers and the influence of knowledge spillovers on the spatial distribution of future 
innovation. 
 Thirdly, this paper also contributes to our understanding of knowledge diffusion across 
technology clusters. Given its importance to the industrial agglomeration (Marshall 1920, 
Feldman 1994, Audretsch and Feldman 1996, Ellison et al. 2010), the literature on knowledge 
diffusion has increasingly focused on its “localization”, at an increasingly micro level, from 
the same Metropolitan Statistical Area (Jaffe et al. 1993), to the same zip code (Kerr and 
Kominers 2010), and to “blocks away” (Arzaghi and Henderson 2008). Much less attention 
has been paid to how knowledge diffuses (or fails to diffuse) across technology clusters. Most 
knowledge diffusion, as measured by patent citations, is not localized. Figure 1 shows that 
for patents applied between 1980 and 2010, fewer than 20% of backward references are those 
with the inventor addresses of the citation-making patent and the citation-receiving patent 
located in the same CBSA. This share decreased between 1980 and 1995 and stabilized 
afterwards. In contrast, cross-CBSAs patent references have always accounted for the bulk 
of patent references, which experienced a slight increase before 2000 and plateaued at around 
60% since then. Figure 2 shows that the average distance between citation-making patents 
and citation-receiving patents within the U.S. increased considerably between 1980 and 2000, 
and has oscillated around 1,000 miles since 2000, possibly reflecting the joint effects of 
increased connectedness through travel and increased penetration of the commercial internet 
in the latter part of our sample period. 

Finally, our paper relates to a strand of literature on how communication costs affect 
scientific collaboration, a special channel of knowledge diffusion. Agrawal and Goldfarb (2008) 
find that access to Bitnet increases the collaboration among professors from different 
universities. Using the expansion of Southwest Airlines as an exogenous change to flight 
fares, Catalini et al. (2020) find that lower travel costs increase scientific collaboration among 
university researchers. Chai and Freeman (2019) find that temporary collocation in the 
context of attending the same conference also increases the chance of collaboration. This 
strand of literature sheds light on understanding the diffusion of basic science originated 
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from universities through collaboration. More broadly, our paper is also related to several 
studies that investigate how changes in travel time between a firm’s headquarter and its 
branch locations impact branch-level business outcomes. Giroud (2013) finds that reduction 
in travel times between headquarter and manufacturing plants increases plant-level capital 
expenditure. Levine, Lin, Peng, and Xie (2020) find that shorter travel times between a 
bank’s headquarter and branches increase branch-level lending to small businesses. Our 
paper shares the common theme that tacit knowledge transfer and face-to-face 
communication is an important mechanism for soft information acquisition that is often 
crucial for business decisions. At the same time, however, our results provide novel evidence 
of the impact of travel time reduction on knowledge diffusion across firm boundaries.  

The remainder of this article is organized as follows. In Section 2 we introduce the data 
and discuss our empirical methodology. We present the empirical results in Section 3, and 
Section 4 concludes. 

2. Data and Empirical Strategy 
In this section, we discuss in detail the data sources and our empirical methodology. 

Section 2.1 discusses the data source and sample construction; Section 2.2 presents the 
analytical sample and summary statistics; Finally, Section 2.3 reviews the empirical 
specification.  
2.1. Data and Sample  

Airline Data. We obtain data on airline routes from the T-100 Domestic Segment 
Database for a period running from 1990 through 2010, and ER-586 Service segment data 
for a period running from 1977 through 1989. These two datasets are compiled from airline 
companies’ filings of Form 41 with the U.S. Department of Transportation. All flights that 
have taken place between any two airports in the United States are reported. These 
databases provide monthly data for each airline and route (segment), including the origin 
and destination airports, flight duration, the number of departures scheduled, the number of 
departures performed, and the number of passengers. 

Patent Data. We obtain USPTO patent citation data from the PatentsView4. We restrict 
our sample to the 2.38 million utility patents applied for from 1977 through 2010 and granted 
by 2014 that have at least one U.S. inventor. The PatentsView also provides inventor 

 
4	The PatentsView data are available for bulk download at https://patentsview.org/download/data-download-
tables.		
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disambiguation and assignee disambiguation, allowing us to track inventor relocation, 
inventor self-citation, and assignee self-citation. We drop the 3,978 patents filed in Alaska, 
Hawaii, or U.S. territories and use inventor addresses to geolocate patents in counties in the 
contiguous U.S. For patents involving multiple U.S. inventors, we use the address of the first 
inventor. Patenting activities are highly concentrated in metropolitan areas. We drop 
counties that do not belong to any Core Based Statistical Area (CBSA) and focus on CBSA-
to-CBSA knowledge flow.5 This step removes only 1.4% of the patent sample.  

Our final unit of observation is at CBSA-pair-year level. One noteworthy characteristic 
of our setting is that citations are directional. For example, citations from Chicago to Boston 
and citations from Boston to Chicago indicate knowledge flow in opposite directions. Thus, in 
any given year, Chicago-to-Boston and Boston-to-Chicago appear in data as two distinct 
CBSA pairs. We remove CBSA pairs that have no patent citations at all in the entire sample 
period. For CBSA pairs that have some patent citations in certain years but no citations in 
other years, we keep them for the entire sample period to make the data a balanced panel 
and fill in zero citations for those no-citation years. We do this because switching between 
zero citations and non-zero citations indicates a change in knowledge diffusion at the 
extensive margin. This leaves us with a balanced panel of 110,998 CBSA pairs that span the 
years running from 1977 through 2010.  

2.2. Definitions of Variables and Summary Statistics 
2.2.1 Measuring Travel-Time Change 

To travel from any CBSA to another involves some combination of driving and flying. 
We can group the methods of traveling from CBSA 𝑖  to CBSA 𝑗  into four categories: (1) 
driving from 𝑖 to 𝑗; (2) flying from 𝑖 to 𝑗 ; (3) driving from 𝑖 to a nearby CBSA 𝑘 and then flying 
from 𝑘 to 𝑗; (4) driving to a nearby CBSA 𝑘, flying from 𝑘 to CBSA ℎ, and then driving from 
ℎ to 𝑗. The flight section in (2), (3), and (4) could include direct or indirect flights with up to 
three legs. When flight routes between airports change, inventors who seek to minimize 
travel time may change their mode of travel across these four categories. In any given year, 

 
5 A Core Based Statistical Area (CBSA) is a geographic area defined by the Office of Management and Budget 
that consists of one or more counties (or equivalents) anchored by an urban center of at least 10,000 people plus 
adjacent counties that are socioeconomically tied to the urban center by commuting. In the contiguous United 
States, there are in total 925 CBSAs, covering 1,815 counties (or county equivalents) out of the 3,108 counties.  
See more details regarding the CBSA at https://www.census.gov/topics/housing/housing-patterns/about/core-
based-statistical-areas.html	
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we compare travel time across all these categories to determine the optimal travel itinerary 
for each CBSA pair. 

We use the geodetic distance in miles between the centroids of a CBSA pair and an 
average driving speed of sixty miles per hour to calculate a proxy for between-CBSA driving 
time. To calculate travel time by air between two CBSAs, we use the travel time between 
their airports. Some large CBSAs include more than one airport. For example, there are 
direct flights from LaGuardia Airport (LGA) in New York City to O’Hare International 
Airport (ORD) in Chicago, from Newark Liberty International Airport (EWR) to ORD, and 
from John F. Kennedy International Airport (JFK) to ORD, all connecting New York City 
with Chicago. In this situation, we use the shortest travel time between airport pairs as the 
travel time between CBSA pairs. Travel time between airports consists of the duration of the 
flight (ramp-to-ramp time), the time spent at airports, and the layover time for indirect flights. 
Flight duration per segment is obtained from T-100 and ER-586 data. The time spent at 
airports and layover times are unobservable. Following Giroud (2013), we assume that one 
hour is spent at the origin and destination airports combined, and that each layover takes 
one hour. To remove temporary flights from the sample, we restrict airline routes to those 
regularly operating with at least two passenger flights per week for 52 weeks a year. For new 
airline routes that were introduced in the middle of a year and then continued to operate in 
the following years, the first year of treatment is the first year when the new airline routes 
operated with at least two passenger flights per week for 52 weeks a year. 

Note that we do not account for travel times from distinct locations within a CBSA to 
its airport (or to its centroid). The locations of major airports within a CBSA and within-
CBSA road infrastructure are largely stable over our sample period (Agrawal et al. 2017). 
The distribution of the distances between inventor addresses to CBSA centroids or to the 
relevant airports is also largely stable over our sample period (See appendix Figure A1). We 
account for CBSA-year level characteristics such as the distance between inventors to 
airports using CBSA fixed effects by year, and our identification relies on CBSA-pair-year 
level variations. In other words, when we compare between-CBSA knowledge flow before and 
after changes in flight routes, average travel time from distinct locations within a CBSA to 
its major airports cancels out. It is possible that, after the introduction of travel-time-
reducing flight routes, inventors who benefit from it to a greater extent would move closer to 
the affected airports. This scenario, if it occurs, is a result of the treatment rather than an 
endogeneity issue that hinders identification. 
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Among the 110,998 distinct CBSA pairs in the sample, a total of 17,407 (15.7%) distinct 
CBSA pairs experienced only one change in travel time, and 15,424 (13.9%) distinct CBSA 
pairs experienced multiple changes in travel time. In Table 1, we provide auxiliary 
information about the nature of these changes. There were 37,914 events of travel time 
reduction. The average travel time reduction across these events is 1 hour and 21 minutes, 
which amounts to a travel time reduction of 20%. There were 20,988 events of travel time 
increase. The average travel time increase is 1 hour and 16 minutes, about 24% of the size of 
the pre-change travel time.  

Similar to Giroud (2013), we classify travel-time-reducing itinerary changes into five 
categories:  (1)“Indirect to Direct”, (2) “Indirect to Indirect”, (3) “Direct to Direct”, (4) “Direct 
to Indirect”, and (5) “Road to Flight”. “Indirect to Direct” and “Indirect to Indirect” are the 
two most common types of travel-time-reducing itinerary changes. These typically occur 
when the new optimal itinerary involves fewer stopovers. A “Direct to Direct” itinerary 
change reduces the between-CBSA travel time by flying from an airport closer to the origin 
CBSA or to an airport closer to the destination CBSA. For example, suppose the optimal 
itinerary to travel from CBSA 𝑖 to CBSA 𝑗 was originally to drive from 𝑖 to a nearby CBSA 𝑘 
first, and then take a direct flight from 𝑘 to 𝑗. The introduction of a new flight that directly 
connects CBSA 𝑖 and CBSA 𝑗  will save the driving time and reduce the total travel time. A 
“Direct to Indirect” itinerary change reduces travel time when the shorter drive time in the 
new “indirect” itinerary dominates the shorter flight time in the old “direct” itinerary. Lastly, 
the “Roads to Flight” category applies to pairs of CBSAs that are relatively close to each other 
(315 miles), compared to the average distance of 1060 miles between CBSA pairs that 
experienced travel time reduction. 

2.2.2 Measuring Knowledge Flow  
A backward patent citation signals knowledge flow from a citation-receiving patent to 

a citation-giving patent. We use the application year of the citation-giving patent to 
determine the timing of the knowledge flow because, relative to the grant date, the 
application date is closer to the occurrence of the invention activity (Henderson et al. 2005). 
Thus, the number of citations made by patents applied for in year 𝑡 and invented in CBSA 𝑖 
to prior patents invented in CBSA 𝑗 indicates the volume of knowledge diffusion from 𝑗 to 𝑖 
in year 𝑡. In our main specifications, we use three-year backward citations as our dependent 
variable, i.e., the number of citations made by patents applied for in year 𝑡 in CBSA 𝑖 to 
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patents applied for between year 𝑡 − 3 and year 𝑡 − 1 in CBSA 𝑗. Corresponding to the design 
of this dependent variable, the sample period used in the main specification runs from 1980 
to 2010. In section 3.3 we also explore how the results vary when using a 6-year rolling 
window prior to 𝑡, a 10-year rolling window prior to 𝑡, or a fixed period between 1977 and 
1985.  
2.2.3 Summary Statistics 

The results reported in Table 2 summarize the main variables in the regression 
analysis along with comparisons between CBSA pairs that eventually experienced travel 
time variations and those that never did. On average, the CBSA pairs that experienced travel 
time variations during our sample period are located 1,052 miles from each other, about 100 
miles farther than the average distance between the CBSA pairs with constant travel times. 
This difference translates into about half an hour of additional travel time based on our 
calculations. Along with the greater distances and longer travel times, these “eventually 
treated” CBSA pairs have on average fewer between-CBSA patent citations, fewer patents in 
the citing CBSA, and fewer cumulated patents stock in the cited CBSA.  

2.3. Empirical Methodology 
The introduction of new airline routes that reduce travel time between two locations 

makes it easier for inventors from one location to travel to the other. This facilitates face-to-
face interaction and knowledge diffusion from one location to the other and thus may in turn 
affect the development of new technologies. To examine the effects on knowledge diffusion, 
we estimate a continuous treatment intensity Difference-in-Differences (DiD) panel 
regression specification: 

 𝑦!"# = 𝛽 ⋅ log	(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒!"#) + 𝛾$𝑋!"# + 𝜆!# + 𝜆"# + 𝛼!" + 𝜖!"# , (1) 

where 𝑦!"# measures the knowledge diffusion from CBSA 𝑗 to CBSA	𝑖 in year t. To deal with 

zero values, we use the log	(𝑥 + 1) transformation of the number of citations made by patents 
applied for in year 𝑡 in CBSA 𝑖, and received by prior patents applied for between year 𝑡 − 3 
and 𝑡 − 1 in CBSA 𝑗 as the dependent variable in our baseline specification. In robustness 
checks, we also show that using the citation count directly as the dependent variable with a 
Poisson specification, and using inverse-hyperbolic transformed citation counts with an OLS 
specification lead to consistent results. λ%& are citing-CBSA fixed effects by year and λ'& are 

cited-CBSA fixed effects by year. 𝛼!"  are CBSA-pair fixed effects. 𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒!"#	 is a 

continuous variable that measures the travel time between CBSA 𝑖 and CBSA 𝑗 at time t. 
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The variations in 𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒!"# are the result of changes in the airline routes network, as 

described in section 2.2.1. 𝑋!"# is a vector of control variables, and 𝜖!"#	is the error term. 𝛽 thus 

estimates the effect of travel time on between-CBSA patent citations.  
We adopt such a continuous treatment intensity DiD specification for two main reasons: 

First, travel time changes occurred in both directions. That is, both travel time increases and 
decreases took place. Specifically, during our sample, there are 37,914 travel time reductions 
and 20,988 travel time increases (at the CBSA-pair-year level). It seems appropriate to 
include both types of changes in order to estimate the elasticity of citations to variations in 
travel time. Second, travel changes were fairly frequent during our sample period, with a 
total of 17,407 (15.7%) distinct CBSA pairs experienced one change in travel time, and 15,424 
(13.9%) distinct CBSA pairs experienced multiple changes in travel time. In other words, 
among CBSA pairs that experienced significant travel time changes, close to half 6 
experienced more than one change over our sample period. The high incidence of multiple 
changes that happen within a relatively short time frame makes our setting meaningfully 
different from a typical discrete DiD setting that often involves for instance the passage of 
state-level legislatures. In section 3.2.1, we provide estimation based on discrete DiD design 
for a subset of CBSA pairs that only experienced one single travel time reduction and the 
results are consistent with our main results.8 

Our identification relies on the exogenous variation in between-CBSA travel time. 
Admittedly, airlines’ decisions to introduce new routes depend on economic, strategic, and 
political-economic factors. If there are omitted factors that are driving both the introduction 
of new airline routes and knowledge diffusion, any relationship between the two could be 
spurious because of the confounding effects of the omitted variables. By including cited-CBSA 
fixed effects by year λ'& and citing-CBSA fixed effects by year λ%&, our specification accounts 

for time-varying shocks both at the cited CBSA level and at the citing CBSA level. In this 
way, we are making the comparison between different city pairs consisting of a same cited 
CBSA and multiple citing CBSAs, netting out the technology shocks at the cited CBSA.  

To build more intuition, suppose Boston experiences a technology shock brought about 
by breakthroughs in gene editing, leading other regions to cite more of Boston’s patents. 
Because of such productivity shocks and related economic boom, airlines might also introduce 
new flights to and from Boston. In this case, we will observe both an increase in patent 

 
6 47%=15,424/(15,424+17,407)	
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citations to Boston and more flight connections to Boston even in the absence of any causal 
relationship between the two. Now consider the scenario when a time-reducing direct flight 
was introduced between Boston and San Diego, while Boston and Chicago had always been 
connected by direct flight and thus the travel time between them remained unchanged. Both 
San Diego and Chicago cite Boston more after the technology shock in Boston. Holding other 
things equal, if citations from San Diego to Boston increased to a greater degree than that 
from Chicago to Boston, then the difference between changes in the two pairwise citations is 
likely to be the result of the travel time reduction between San Diego and Boston. Thus, by 
controlling for cited-CBSA fixed effects by year, we can separate the effects of new airline 
routes from the effects of local shocks at the cited CBSA. We account for the shocks local to 
knowledge-absorbing CBSAs similarly with citing-CBSA fixed effects by year.  

A remaining concern is that there could exist shocks that are specific to a CBSA pair. 
In the above example, one possibility is that because of Boston’s booming healthcare industry, 
San Diego CBSA or other CBSAs in which there also exist a strong healthcare footprint start 
to have more patents being cited by Boston or to cite more patents in Boston. In the 
meantime, it is this same set of CBSAs that experiences an increase in the flow of travelers 
to and from Boston. Ideally, one could account for this by including a full set of CBSA-pair 
fixed effects by year, but doing so would also completely absorb our main explanatory 
variable. To address this issue,  we adopt two empirical strategies. First, we examine whether 
our results appear at the “correct” time. If a new airline route is an endogenous outcome of a 
pre-existing location-pair shock, we would expect to find an “effect” even before the new 
airline route is introduced. Second, we re-estimate our results by regressing patent citations 
on changes in travel time that are directly due to the opening of a hub. Airport hubs are used 
mainly to concentrate passenger traffic and serve as layover airports to facilitate transferring 
them to their final destinations, which achieve economies of scale and lower operating costs 
(Berry et al. 1996). Airline route changes following the opening of a new hub are much less 
likely to be the result of CBSA-pair level shocks (Giroud 2013).7  

3. Empirical Findings 
3.1. Baseline Results: Proximity and Citations 

 
7 A list of hub openings in our sample period is available upon request.  
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We present our main results in Table 3. In column (1), we simply regress patent 
citations on Log(Distance). We control for the number of newly applied patents in the citing 
CBSA, the patent stock in the cited CBSA, year fixed effects, citing-CBSA fixed effects, as 
well as cited-CBSA fixed effects. The results show a strong negative correlation between 
distance and knowledge flow. The purpose of this initial test is to show consistency with 
studies in the literature on localized knowledge diffusion. The results in column (1) are 
consistent with prior findings that geographic constraints play a significant role in 
influencing knowledge spillover. In column (2), we augment the specification in column (1)  
with Log(Travel Time). While distance and travel time are positively correlated, when we 
include both in the same regression, the negative effects of travel time on knowledge diffusion 
dominate, while the coefficient of distance turns positive. This is indeed possible because, 
among regions with the same between-CBSA travel time, some CBSA pairs that are highly 
connected in innovative activities happen to be located far apart. 8  One example is 
biotechnology, for which the two biggest clusters – Boston and San Diego, crosses the 
contiguous United States diagonally.  

Column (3) contains our baseline result, in which we estimate Equation (1). The 
results show a negative and statistically significant coefficient on Log(Travel Time). In terms 
of economic magnitude, reducing the travel time between a given CBSA pair by 20% on 
average increases its knowledge flow by 0.5% (20% x 0.025). Note that this is a sizeable 
economic magnitude given the stringent specification employed. To put things in perspective, 
our sample contains 110,998 CBSA pairs spanning 31 years with an average citation of 0.91. 
With the average between-CBSA travel time at 6 hours, an average of 20% decrease (72 
minutes) in travel time increases citations by 0.50%, which translates to 15,656 citations 
(0.91×3,440,938×0.50%). In appendix Table A1, we re-run column (3) with the robust 
standard errors clustered at the CBSA-pair level and at the citing CBSA level, respectively. 
The coefficients of Log(Travel Time) remain statistically significant. 

In column (4) we investigate whether our results appear at the “correct” time. Besides 
contemporaneous travel time, we also control for the between-CBSA travel time one year 
before the focal year, 𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)#() , and that one year after the focal year,  
𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)#*) . A significant coefficient of 𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)#*)  would indicate that 

 
8 See innovation cluster maps at https://www.clustermapping.us/region. The source of the map is the U.S. Cluster 
Mapping Project, Institute for Strategy and Competitiveness, Harvard Business School. 
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future travel times “affect” current knowledge diffusion, suggesting that knowledge diffusion 
changes before travel time actually changes, thereby casting doubt on the statement that 
reduced travel time stimulates knowledge diffusion. Reassuringly, we find that the coefficient 
of 𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)#*)  is statistically insignificant. In contrast, the coefficient of 
𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)#()  is statistically significant and close to the coefficient of 
𝐿𝑜𝑔(𝑇𝑟𝑎𝑣𝑒𝑙	𝑇𝑖𝑚𝑒)  in size, suggesting a lasting effect. In other words, if travel time was 
reduced last year, it remains facilitating knowledge diffusion this year.  
3.2. Robustness Checks 

In this section, we conduct a battery of robustness tests to examine whether the 
documented results are sensitive to a discrete difference-in-differences specification, 
redefining travel time changes to those due to hub openings, and alternative empirical 
specifications. These results are presented in Tables A2 to A3 of appendix.  
3.2.1. Discrete Difference-in-Differences 

For comparison with the literature (Giroud 2013) and to show how events of 
significant drops in between-CBSA travel time affect knowledge diffusion, in Table A2 we 
restrict our sample to CBSA pairs that have experienced no more than one reduction in travel 

time and recode our travel time variable as a discrete shock. Specifically, we define Dm (Post 

Travel Time Reduction) as an indicator variable that is equal to one if the travel time between 

two CBSAs decreases by more than 1.5 hours as a result of a new flight route introduction, 

and zero otherwise. In column (1) we show that the coefficient on Dm (Post Travel Time 

Reduction) is positive and statistically significant. This is consistent with our baseline 

results: reducing travel time boosts between-CBSA knowledge diffusion.  
Following the standard tests for pretends and dynamic treatment effects which are 

common among applications of DiD method with two-way fixed effects model, in column (2) 
we replace Post Travel Time Reduction Dummy with six different dummies. Travel Time 
Reduction Year (-3), Travel Time Reduction Year (-2), and Travel Time Reduction Year (-1) 
are dummies that equal one if a CBSA pair will experience a major travel time reduction (i.e., 
1.5 hours or more in reduction) in three years from now, two years from now, and one year 
from now, respectively.  Travel Time Reduction Year (0) is a dummy that equals one in the 
year when a CBSA pair experience a major travel time reduction. In a similar vein, Travel 
Time Reduction Year (1) and Travel Time Reduction Year (2) are dummies that equal one if 
a CBSA pair experiences a major travel time reduction one year ago and two years ago, 
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respectively. Finally, Travel Time Reduction Year (3+) is a dummy that equals one if a CBSA 
pair experiences a major travel reduction more than three years ago. The period prior to three 
years before the travel reduction shock is used as the reference group.  

The goal of the treatment dynamics test is to ensure there are no trends that already 
occur before the actual treatment takes effect. In particular, if direct flight routes are 
introduced as a response to underlying economic booms and increases in innovative activities, 
then we should expect to see an “effect” of the travel time reduction prior to the actual 
introduction of the direct flights. The results in column (2) of Table A2 show that the 
coefficients on Travel Time Reduction Year (-3), Time Reduction Year (-2), and Travel Time 
Reduction Year (-1) are small in economic magnitude and statistically insignificant, 
indicating that there are no pre-trend treatment effects. We plot these coefficients and their 
confidence intervals in Figure 3. The effects are present in the year of treatment and get 
bigger in later years after treatment. Recall that our measure of knowledge diffusion is the 
number of citations made by patents applied in t to prior patents applied between t-3 and t-
1. Only by year t+3, the pool of patent stock to be cited are all applied for after the travel-
time-reducing event occurred in year t. Consistent with this design, the treatment effects get 
much bigger after three years post-treatment. 
3.2.2. Hub Openings 

In this section, we show that our results are robust when we consider only travel-time 
reductions that reflect new hub openings. Most hub openings date back to the 1980s. Before 
the Airline Deregulation Act of October 1978, airlines were mandated by the federal 
government to fly directly between pairs of small markets. Following deregulation in the 
1980s, airlines began competing for strategic hub locations, switching from the point-to-point 
system to the hub-and-spoke system (Borenstein 1992, Cook and Goodwin 2008). Changes in 
airline routes caused by hub openings are less likely to be driven by shocks at the CBSA-pair 
level.  

We define a CBSA pair as Hub Treated when the CBSA pair experiences a travel time 
change involving airline routes that are introduced in the same year when the origin, the 
destination, or any connecting airport becomes a new hub. In Panel A of Table A3 in the 
appendix, we regress on Log(Travel Time) and the interaction between Log(Travel Time) and 
Hub Treated in column (1). We find that the coefficient on Log(Travel Time) remains negative 
and significant. Interestingly, the coefficient on the interaction term Hub Treated * 

Log(Travel Time) is also negative and significant at the 10% level. This result indicates that 
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travel time reductions that are related to hub openings tend to have a bigger impact on patent 
citations, which is economically intuitive as hub openings generally involve the overhaul of 
existing infrastructures and often are accompanied by significant efficiency improvements 
and travel time reductions. In column (2), we estimate our baseline specification on CBSA-
pairs that are ever affected by hub openings. Note that this is a much smaller sample, with 
only roughly 6% of the number of observations in the baseline regression. Even in this very 
small sample and with our stringent fixed effects specification, we find a negative and 
significant impact of travel time on patent citations. Consistent with the result in (1), 
knowledge diffusion is more responsive to travel time in hub-treated CBSA pairs. Finally, in 
column (3), we experiment with yet another empirical option whereby we define the travel 
time to be the actual travel time only for hub-treated CBSA pairs, but set it as the 1980 initial 
travel time value for all other pairs. By removing those travel time reductions that are 
unrelated to hub openings, this alternative empirical specification is more conservative but 
provides an arguably cleaner estimate of the effect of travel time on patent citations. Once 
again, we continue to see a negative and significant coefficient on this redefined travel time 
variable.  
3.2.3.  Alternative Specifications 

The pattern of our results is also not sensitive to the log	(𝑥 + 1) transformation. In 
Panel B of Table A3 in the appendix, we investigate whether our results are sensitive to 
alternative empirical functional forms. In columns (1) through (3), we use the OLS model 
with inverse hyperbolic transformed citation counts as the dependent variable, the Poisson 
model with citation counts as the dependent variable, and the OLS model with citation counts 
as the dependent variable. All the results are qualitatively consistent and quantitative 
comparable with our baseline estimates. 	

3.3. Heterogeneity  
We next study how the effects vary in the cross-section. We first examine how the effects 

vary depending on the connection between the knowledge-absorbing entity (citation maker) 
and the knowledge-diffusing entity (citation receiver). We find that travel time reduction 
mainly facilitates knowledge spillovers across organizational boundaries. We then show how 
the effects vary by the between-CBSA distances, by the absorptive capacity of the citing 
CBSAs, by the technology complexity of the knowledge to be diffused (the cited patents), and 
by the freshness of the knowledge to be diffused. The latter two heterogeneity patterns 
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suggest that the diffusion of knowledge that is more complex and less well-codified is more 
responsive to travel time.  
3.3.1.  Sources of Patent Citations 

In this section, we examine how the effects of travel time on knowledge-diffusion vary 
depending on the connection between the knowledge-absorbing entity (citation maker) and 
the knowledge diffusing entity (citation receiver). In Table 4 column (1), we first replicate our 
baseline result from Table 3 for ease of comparison. In column (2), we use the between-CBSA 
inventor self-citations as the dependent variable. A patent citation is counted as an inventor 
self-citation when a same inventor appears both on the citing patent and on the cited patent. 
This scenario could occur when the inventor relocates to a different CBSA and cites her own 
prior patents when applying for new patents. However, inventor self-citations only account 
for about 3.2% of citations, so they are unlikely to be the main factor contributing to our 
findings. Moreover, while shorter travel time is associated with more inventor self-citations, 
the coefficient is insignificant.  

In column (3) we use the between-CBSA same-assignee citations as the dependent 
variable. Less than 2% of patents in the sample are assigned to more than one assignee. A 
patent citation is counted as a same-assignee citation when the citing patent and the cited 
patent have any overlap in assignees. We also make use of the assignee-to-public-firm match 
constructed by Kogan et al. (2017) to identify additional patent citations where the assignee 
of the citing patent and the assignee of the cited patent belong to a same public firm. We 
count these additional citations together with the same-assignee citations as the same-firm 
citations, and use it as the dependent variable in column (4). Again we get a negative but 
insignificant coefficient of Log(Travel Time), suggesting that knowledge diffusion within 
organizational boundaries is not responsive to variations in travel time. Given the pre-
existing within-organization channels for communication (Alcácer and Zhao 2012), one 
potential reason for this is that there is limited margin that additional reduction in travel 
time can contribute to.9  

 
9 The lack of significance for within-firm knowledge diffusion could be due to the fact that within-firm knowledge 
diffusion across CBSAs is relatively rare. The majority of intra-firm knowledge diffusion occur within the same 
CBSA instead of between CBSA pairs. While there are patent citations in 13.36% of the observations at the CBSA 
pair-year level, within-firm patent citations occur only in 1.48% of the sample. Therefore, travel time reduction 
could still be a highly important channel of within-firm knowledge diffusion across CBSAs, but is unfortunately 
not captured by our empirical setting. 

Electronic copy available at: https://ssrn.com/abstract=3851753



	 20	

For the dependent variable in column (5), we exclude the inventor self-citations and 
same-firm citations. The coefficient of Log(Travel Time) is negative, significant, and larger in 
magnitude  compared to our baseline in column (1), which indicates that travel time reduction 
mainly facilitates knowledge diffusion across organizational boundaries. Such knowledge 
diffusion is indeed knowledge “spillovers” in the sense that they generate positive 
externalities to entities beyond their original inventors or owners.  

Next, we consider how the effects of travel time on cross-organizational knowledge 
spillovers would be mediated if there are some linkages between these organizations. Given 
that more than 96% of all assigned patents are granted to corporations (Hall, Jaffe, and 
Trajtenberg, 2001), we consider three types of firm linkages: firms that form a joint venture; 
firms with block holdings in each other; and firms that are vertically connected along the 
supply chain.  

We obtain data on joint ventures and mergers and acquisitions from the Securities Data 
Company (SDC) Platinum™. The data on vertical customers is from Compustat Segment – 
Customer file. Starting from 1997, the Securities and Exchange Commission requires that 
all public firms disclose major customers to which they sell 10% or more of their output. This 
data allows us to capture major supplier-customer linkages between public firms. In column 
(6), we use “Joint Venture” citations as the dependent variable. It includes all patent citation 
pairs where both the citing patents and the cited patents are linked to some publicly listed 
firms (PERMNO) and the two firms have had joint venture deals in or prior to the year of 
citation. “M&A citations” and “Vertical Customers Citations” in columns (7) and (8) are 
defined correspondingly. Note that only when both the citing patents and the cited patents 

are assigned to publicly listed firms, we can identify these linkages. These by no means 

provide complete coverage for all the between-firm linkages. Only 7.3% of the patent citations 
are identified as “Joint Venture” citations, 1.2% are identified as “M&A citations”, and 1.5% 
are identified as “Vertical Customer” citations.10 Although these citation counts are at about 
the same scale as same-inventor or same-assignee citations, nevertheless, Log(Travel Time) 

has a significant and negative coefficient. When compared to the mean of the dependent 
variable, the relative sizes of the coefficients in column (6) to column (8) are bigger than that 
in our baseline column (1).  

 
10	Calculated based on the summary statistics provided in table 4. For example, 0.061/0.831=7.3%.	
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Taken jointly, these patterns suggest that within-firm knowledge diffusion is not 
responsive to travel time variations. In contrast, travel time reduction mainly facilitates 
knowledge spillovers across organizational boundaries,11 and these effects are magnified 
when there are some pre-existing inter-organizational linkages such as joint venture, mutual 
block holding, or vertical supplier-customer relationship.  
3.3.2. Geographic Distance 

Panel A of Table 5 examines how our main effect varies with the distance between 
CBSA-pairs. We conjecture that the farther away CBSAs are from each other before the 
travel time reduction, the more affected the CBSAs are when travel time is reduced. This is 
intuitive as it does not take much time to travel between CBSA pairs that are located close 
to each other regardless of the travel time change.  

To test this hypothesis, we divide our sample into four subsamples based on the 
distance between CBSA pairs and re-estimate our baseline regression in each distance 
quartile. We find that the main effects are mostly present in the top quartile and the 50th – 
75th percentile, as evident in the large and negative coefficients. In contrast, the effect of 
travel time on citations is small in magnitude and statistically insignificant in the lowest 
distance quartile (col. 1) and 25th – 50th percentile (col. 2).  
3.3.3. Absorptive Capacity 

We next follow a similar strategy and split the sample into quartiles of “absorption 
capacity” of the citing CBSAs. The rationale for this approach is the more innovative a CBSA 
is, the more capable inventors there are to absorb new knowledge (Cohen and Levinthal 
1990). Specifically, we use the cumulative number of patents applied during the fixed window 
between 1977 and 1985 to proxy for the “absorptive capacity” of a CBSA. We do not use 
contemporaneous patent counts for such a proxy out of the concern that reduced travel time 
may influence the quantity of innovation and thus change the composition of the four 
subsamples.12 As is shown in Panel B of Table 5, effects of travel-time reduction on knowledge 
diffusion are driven mainly by the citing CBSAs in the top quartile of absorptive capacity. 
For the citing CBSAs in the second quartile of absorptive capacity, the coefficient of travel 

 
11 These results expand and build on prior studies such as Giroud (2013) and Levine et al. (2020) that focus on 
the impact of travel time reductions within the firm boundaries impact business decisions at the individual branch 
level by enabling less costly information acquisition by the headquarter. Our results suggest that the impact of 
travel time reductions seems to also go beyond firm boundaries.   
12 Using contemporaneous patent counts to proxy for “absorptive capacity” of a CBSA and splitting the sample 
accordingly generates similar results.	
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time drops by more than half and is not statistically different from zero. This is not 
surprising, as the spatial distribution of innovative activities is highly concentrated.13  
3.3.4. Technological Complexity of Cited Patents 

The third dimension along which we study the variation of our documented effect is the 
complexity of the technology class of the citation-receiving patents. The idea behind this 
cross-sectional test is that if travel time reduction leads to higher citations by lowering the 
cost of information acquisition and tacit knowledge transfer, the effect should then be the 
strongest for cited patents that are highly complicated in nature. It is reasonable to expect 
that these complex patents are the ones that need inventors to meet at one physical location 
to discuss and exchange ideas, stories, as well as other related know-how that pertain to the 
specific invention.  

To this end, we classify citation-receiving patents into four quartiles of technology 
complexity (Broekel 2019)14 and count the CBSA-pair-year level number of citations to these 
four sets of patents separately. The results of this exercise are reported in Panel C of Table 
5. Consistent with our conjecture, the effect of travel time reduction on knowledge spillover 
is robust in all four quartiles of technological complexity, but is the largest in the top quartile.  
3.3.5. Reference Windows 

We have thus far focused on the backward citation within three years. In Panel D of 
Table 5, we present results exploiting alternative time windows of reference. The dependent 
variables in columns (1) through (3) are the number of citations to prior patents in 3-year, 6-
year, and 10-year rolling reference windows15, respectively. We also consider a fixed reference 
window in column (4), i.e., looking at citations to the patent stock applied for between 1977 
and 1985 as the dependent variable. We find that the coefficient on travel time monotonically 
decreases from column (1) to column (4), both in terms of economic magnitude and statistical 
significance. This is consistent with that newly generated knowledge is less likely to be well 
codified and more tacit in nature for which effective learning relies more on face-to-face 

 
13 The first quartile of citing CBSAs account for 74.2% of all the patents applied for between 1977 and 1985. This 
figure drops to 15.1% for the second quartile, 7.1% for the third quartile, and 3.5% for the bottom quartile. 
14 Broekel (2019) construct and provide a measure for the technology complexity of patents based on the co-
appearance network of Cooperative Patent Classes (CPCs) among European Patents between 1980 and 2015. 
Thus, this measure of technology complexity is exogenous to the spatial distribution of patents and the knowledge 
diffusion pattern in the United States.  
15	The sample periods corresponding to these dependent variables are from 1983 to 2010, from 1987 to 2010, and 
from 1986 to 2010, respectively.	
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communications. In contrast, dated knowledge is more mature and better codified, so that a 
reduction in travel time does not significantly change its transfer. 

We also perform our analysis by technological classes and find that, in technological 
classes which rely on recent technological developments to a greater extent, travel time 
reduction has a greater effect on knowledge diffusion. In technological classes which make a 
higher share of backward references to dated prior patents, travel time reduction has a 
smaller effect on knowledge diffusion. We present this pattern in appendix Figure A2. This 
pattern is also consistent with a tacit-knowledge interpretation. In technology areas that are 
more well-developed and more mature, pre-existing knowledge and technologies tend to be 
well-codified (Pisano and Shih 2012). In technology areas where the frontier shifts more 
quickly, technological know-how is not yet codified and more tacit in nature. Knowledge 
diffusion in these areas relies heavily on direct interpersonal interaction (Zucker et al. 1998) 
and thus is potentially affected to a greater extent by travel time reduction. 
3.4. The Volume and Direction of New Knowledge Creation 

So far, our results show that reduced travel time leads to higher between-CBSA 
knowledge spillovers. Studies have shown that localized knowledge spillovers drive the 
agglomeration of innovation (Ellison et al. 2010), and local infrastructure enhances local 
knowledge creation by facilitating knowledge spillovers (Agrawal et al. 2017). Much less is 
known about whether the effects of knowledge spillovers on knowledge creation hold over a 
wider geographic scale and across technology clusters. In this section, we investigate how 
increased knowledge spillovers induced by travel-time reduction affect the quantity, 
significance, and direction of future innovation. 

In column (1) of Table 6, we show that reduced travel time is positively associated with 
a greater number of patents at knowledge-receiving locations, a finding that is consistent 
with the notion that increasing knowledge flow is likely to increase innovation activity. To 
gauge the quality or the impact of new patents, in column (2), we employ the logged number 
of patents at knowledge-receiving CBSAs weighted by the number of forward citations they 
received as the dependent variable and find a larger effect of travel time. More directly, we 
also find that travel-time reduction significantly increases the number of high-impact patents 
as defined by those ranking top 25% (column 3) among patents applied for in the same year 
based on their total forward citations garnered by 2020.  

Finally, we investigate how increased knowledge spillovers induced by travel-time 
reduction affect the technological direction of innovation. Following Jaffe (1986), MacGarvie 
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(2006), and Forman and van Zeebroeck (2015), we use the inner product of the patent-class 
vectors between two CBSAs to measure the between-CBSA similarity of technological 
direction. Specifically, with the citing CBSA (the knowledge recipient) denoted by 𝑖 and the 
cited CBSA (the knowledge source) denoted by 𝑗: 

 𝑇𝑒𝑐ℎ𝐷𝑖𝑟𝑆𝑖𝑚!"# =
Σ+,)- 𝑃!+# ⋅ 𝑃"+#

NΣ+,)- 𝑃!+#. ⋅ NΣ+,)- 𝑃"+#.
, (1) 

where 𝑃/+⋅ (𝑙 = 𝑖, 𝑗) denotes the number of patents in CBSA 𝑙, 𝑐 = 1,2, … ,𝑀 indicates the 𝑀 
distinct patent technological classes16, and 𝑡 denotes the patents application year. By design, 
𝑇𝑒𝑐ℎ𝐷𝑖𝑟𝑆𝑖𝑚!"# is a number ranging between zero and one. When it takes the value of zero, it 

indicates that the technological strengths of the two CBSAs are orthogonal. When it takes 
the value of one, the technological strengths of two CBSAs are perfectly aligned. In column 
(4) of Table 6 we find that a reduction in travel time significantly increases the between-
CBSA similarity of technological direction of newly applied patents. That is, a reduction in 
travel time steers the evolution of the technology strengths in the two CBSAs towards a more 
similar direction. This last finding suggests that not only that the spatial distribution of 
technologies affect where inventors source knowledge, the pattern of knowledge diffusion also 
affects the spatial distribution of technologies in turn. 
3.5. Potential Mechanisms and Further Discussions 

Results from previous sections (i.e., 3.3.3 and 3.3.4) show that travel-time reduction 
facilitates particularly the diffusion of more complex and more recent and presumably less 
well-codified knowledge, both of which suggest that tacit knowledge transfer is probably an 
important mechanism of the documented effect. This is economically intuitive because 
reduced travel time makes face-to-face interactions easier, allowing inventors to get together 
through formal or informal social settings to share stories, knowhows, and experiences and 
ultimately leading to more transfer of tacit knowledge. We now investigate three distinct yet 
non-mutually exclusive aspects of innovation that provide some corroborative evidence to 
support this interpretation. First, we examine whether a reduction in travel time influences 
the inventor relocation and inventor collaboration. Second, we study whether our results are 
stronger when convenient nonpersonal means of information transmission through 
information technologies were unavailable. Lastly, we use two specific patents to illustrate 

 
16 We use the section codes of the International Patent Classes (IPC). For patents with more than one IPCs, we 
use the main technological class only.  

Electronic copy available at: https://ssrn.com/abstract=3851753



	 25	

why our estimates based on patent citations, a usage of published documents, could indeed 
capture the diffusion of tacit knowledge.  
3.5.1 Inventor Relocation and Inventor Collaboration 

Non-codifiable technological knowledge is non-severable from the workers who possess 
them (Sørensen 1996), and inventor mobility is an important channel through which such 
knowledge transfers across organizational and geographical boundaries. The frequent job 
mobility and knowledge spillovers associated with it contributed to the rise of the Silicon 
Valley (Saxenian 1996). Beyond the protection of intellectual property provided by the patent 
system, firms also resort to noncompete agreements to retain inventors so as to avoid 
knowledge leakage to competitors (Marx et al. 2009, Marx 2011).  

Reduced travel time between a CBSA pair makes it easier for inventors in one CBSA 
to seek job opportunities in the other. When an inventor moves to a new CBSA, the inventor 
not only cites the patents local to her old CBSA when she applies for patents from the new 
CBSA, but also interacts with other inventors in the new CBSA and transfers to them the 
tacit knowledge from her old CBSA. The inventor may also absorb tacit knowledge in the new 
CBSA and transfer it back to the old CBSA as she maintains interactions with inventors 
there (Almeida and Kogut 1999, Møen 2000, Agrawal et al. 2006, Singh and Agrawal 2011). 
All these would increase between-CBSA patent citations.  

Using name-disambiguated patent data from PatentsView, we are able to track 
inventor relocation. When an inventor appears on multiple patents with addresses in 
different CBSAs, we identify an incidence of inventor relocation (Marx et al. 2009). We use 
the application year of the subsequent patent as the year when inventor relocation occurs.17 
The distribution of the between-CBSA inventor relocation is highly skewed. Only about 5% 
of our CBSA-pair-year level observations have non-zero inventor relocation. In Table 7 
column (1), we find a negative coefficient on Log(Travel Time), which suggests that reduced 
travel time leads to an increased probability of between-CBSA inventor relocation. This 
coefficient is significant at the 1% level. In column (2), we regress the between-CBSA citations 
on both the Log(Travel Time) and a dummy capturing between-CBSA inventor relocation. As 
expected, between-CBSA inventor relocation is significantly positively associated with 
between-CBSA patent citations. The size of the coefficient of Log(Travel Time) declines 

 
17 Using the application year of the prior patent, or the midpoint between the application year of the prior patent 
and the subsequent patent leads to qualitatively the same result. 
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slightly from -0.25 in the baseline result to -0.24, indicating that between-CBSA inventor 
relocation partially accounts for the effects of reduced travel time on patent citations, albeit 
the effect being small.  

Several reasons might explain the seemingly small change in the coefficient of 
Log(Travel Time) between columns (1) and (2). First, our measure of inventor relocation is 
unfortunately quite noisy due to the inaccurate timing for when the relocation occurs. Second, 
only a small part of between-CBSA traveling and interactions will eventually turn into job 
relocation. Moreover, in order to be captured by the patent database, these scientists and 
engineers will have to have changed jobs between-CBSA, have contributed to knowledge 
spillovers, and will patent again. This stringent requirement means that only a very small 
proportion of inventors is captured by our empirical specification. Taken together, our results 
support the conjecture that reduced travel time increases between-CBSA knowledge transfer 
by making it easier for an inventor to travel and interact with other inventors. In addition, 
the economic magnitude documented should be interpreted as an underestimate of the actual 
effect of inventor relocation.  

The second potential channel we investigate is whether reduced communication costs 
influence between-CBSA collaboration (Agrawal and Goldfarb 2008, Catalini et al. 2020). We 
count each pair of inventors who locate in different CBSAs and appear on a same patent as 
an incidence of between-CBSA collaboration. The results in Table 7 column (3) show that 
when we regress an indicator variable that captures between-CBSA collaboration on 
Log(Travel Time), the coefficient on travel time is insignificant and small in size though 
negative as predicted. In column (4) we regress between-CBSA patent citations on both travel 
time and a dummy indicating the existence of between-CBSA collaboration. While the 
existence of between-CBSA collaboration significantly and positively increases patent 
citations, adding it to the baseline regression does not affect the coefficient of travel time. 
Though this result may appear to contradict the literature at first sight, upon close 
inspection, however, an important difference exists between our setting and prior literature 
on scientists’ collaboration. Namely, existing studies on how travel costs influence 
collaboration (Boudreau et al. 2017, Chai and Freeman 2019, Catalini et al. 2020) are almost 
exclusively based on academic collaboration which forms more “organically” and 
spontaneously. In our setting, the formation of an inventor team is likely to be constrained 
by firms’ organizational structure, as multi-locational firms may have other within-firm 
channels for knowledge transfer (Alcácer and Zhao 2012) that are not sensitive to travel time 
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changes. Moreover, firms might have policies on R&D team formation and collaborative 
relationships, which differ from a freestyle collaboration in the academic setting.   

In summary, while both inventor relocation and between-CBSA collaboration have 
positive effects on patent citations, reduced travel time is likely to increase between-CBSA 
knowledge diffusion through increasing inventor traveling and circulation. Within-firm 
collaboration does not appear to be responsive to travel time reduction, possibly because there 
already exist strong ties within multi-location firms that connects inventors. These findings 
are also consistent with our earlier results (i.e., Table 4) that reduced travel time mainly 
facilitates between-CBSA knowledge spillovers across organizational boundaries rather than 
within organizations.  
3.5.2 Effects Before and After the Rise of the Internet 

In the latter half of our sample period, information technologies (IT) and Internet 
adoption revolutionized the way people communicate with each other. Prior studies have 
shown that IT and Internet adoption increased both the diffusion of explicit knowledge 
through facilitating document searching and the diffusion of tacit knowledge through 
facilitating interpersonal communications (Forman and van Zeebroeck 2019). IT and the wide 
availability of fast Internet may substitute some face-to-face interaction that can only be 
achieved by traveling to the same physical location, thus making travel time reduction less 
important in knowledge diffusion. To test this conjecture, we split our sample by 1995, the 
year when the commercial Internet began to diffuse (Giroud 2013, Forman and van Zeebroeck 
2019), into two time periods of about the same lengths: 1980-1995 (16 years) and 1996–2010 
(15 years). In Table 8 we show that travel time has a negative and significant effect on patent 
citations in the early half of our sample period (Column 1), but an insignificant effect in the 
latter half which happens to correspond to the rise of the information technology. This 
pattern is consistent with Giroud (2003), who also find a dampened effect of travel time 
reduction on communications between headquarter and plants for the period after 1995.  

To more directly test whether the lack of effects of travel time on knowledge diffusion 
is related to the rise of the Internet, we investigate how the availability of commercial 
Internet affects the effects of travel time. Specifically, we obtain the number of high-speed 
Internet service providers by ZIP codes by year from Form 477 data18.  This data was collected 

 
18 https://www.fcc.gov/form-477-data-zip-codes-number-high-speed-service-providers	
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annually starting from 1999 until 2008.19 We average20 this zip-year-level number at the 
CBSA-year level. For each year, we use the lower number of the two, one at the citing CBSA 
and one at the cited CBSA, to measure dyadic internet availability at the CBSA-pair-year 
level. The rationale for this measurement is that, even if there is commercial Internet 
available in one CBSA but not in the other CBSA, the CBSA pair still does not benefit from 
the lower communication costs brought about by the Internet.  

 In Table 8 column (3), we first report our baseline regressions for this subsample 
between 1999 and 2008. In column (4), we include the Log(travel time), dyadic internet 

availability, as well as the interaction between the two variables. Several patterns are 
noteworthy: First, the main effect of travel time on citations during this period remains 
negative and significant. In particular, the size of the coefficient is close to our baseline 
results. It indicates that, when at least one of the two CBSAs of a pair does not have any 
high-speed internet provider, travel time reduction significantly increases between-CBSA 
knowledge diffusion during the latter sample period just as it does in the earlier period. 
Second, the coefficient of dyadic internet availability is positive and significant. That is, 
holding travel time constant, increasing the number of high-speed internet providers 
increases between-CBSA knowledge diffusion. Finally, the interaction between travel time 
and dyadic internet availability is positive, suggesting that the longer the travel time, the 
bigger the effects of the Internet on knowledge diffusion.  

To shed further light on how various levels of dyadic Internet availability between 
CBSA pairs impact knowledge diffusion, we further decompose the availability variable into 
separate indicators: Dm(Dyadic Internet Availability ∈[0,1)), Dm(Dyadic Internet Availability 

∈ [1,2)), Dm(Dyadic Internet Availability ∈ [2,3)), and Dm(Dyadic Internet Availability ≥ 3). 
For instance, Dm(Dyadic Internet Availability ∈ [0,1)) is an indicator variable that takes the 
value of one if neither of the two CBSAs of a given CBSA pair has one or more internet 
providers per zips-code on average, and zero otherwise. Dm(Dyadic Internet Availability ∈

[1,2)) is an indicator variable that takes the value of one if both the two CBSAs of a given 
CBSA pair has at least one but no more than two internet providers per zips-code on average, 
and zero otherwise. The other three dummy variables are defined analogously. Figure A3 

 
19 The data is available up to 2008 due to the saturated coverage (up to 96% by 2007, see Atasoy 2013). 
20 For zip codes with between one to three high-speed internet service providers, the data do not disclose the 
specific number for confidentiality protection. In this case, we fill the zip-year observation with 1.5 providers. For 
zip codes that do not appear in the form 477 data in a year, we fill the zip-year observation with zero provider. 	
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provides the distribution of the Dyadic Internet Availability. Evidently, the distribution is 
highly skewed to the right, with a large number of CBSA pairs having one to three average 
Internet Service Providers (ISP) and a small number of CBSA pairs having greater than five 
ISPs.  

In Column (5), we re-estimate the interactive effects between travel time and Internet 
availability on knowledge diffusion using the newly created binary variables. Several results 
stand out: First, the coefficient estimates for the four interactions increase monotonically, 
from -0.022 for Log (Travel Time) X Dm(Dyadic Internet Availability ∈[0,1)), to 0.041 for Log 

(Travel Time) X Dm(Dyadic Internet Availability ≥3)). This monotonic pattern suggests that 
physical, face-to-face interaction remains highly important for knowledge diffusion when 
alternative channels of communication enabled by Broadband Internet are unavailable, but 
its importance significantly declines when such alternatives become readily available. 
Second, the coefficient of -0.022 for the first interaction (Log (Travel Time) X Dm(Dyadic 

Internet Availability ∈[0,1))). Not only is this coefficient statistically significant at the 5% 
level, the magnitude is also almost the same as the coefficient in column (1) (i.e., -0.023). This 
suggests that, in the later sample period (i.e., 1999-2008), for CBSA pairs that are poorly 
connected by the Internet, travel time bears almost the same level of importance for 
knowledge diffusion as in the earlier period (i.e., 1980 to 1998). In contrast, the coefficient on 
the interaction term Log (Travel Time) X Dm(Dyadic Internet Availability ≥3)) is statistically 
significant and positive. This implies that the longer the travel time, the larger the effects of 
Internet penetration on knowledge diffusion, which possibly reflects the notion that CBSA 
pairs that are more distant in terms of travel time have more under-explored opportunities 
for knowledge exchange and the introduction of the Internet enables such “catching up”.  

Taken together, these results point to a strong substitution effect between face-to-face 
meetings as dictated by travel time and alternative methods of communication that allow for 
both visual and audio interaction. Though we do not think such substitutability is 100%, i.e., 
there are certain aspects of knowledge transfer that rely on tacit knowledge (our focus for the 
next section), informal social interaction, and perhaps relationship building, technology-
enabled new methods of communication such as Zoom/Teams meetings provide a timely and 
crucial alternative when face-to-face interactions are rendered impossible.  

Thinking beyond our results, during the initial onset of the recent Covid-19 pandemic, 
businesses, schools, governments, and research institutions in the U.S. and globally saw a 
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sudden imposed termination of face-to-face communication. Work-from-home became almost 
the only option for continued operations for many organizations, for-profit and nonprofit 
alike. In fact, several studies (e.g., Bai, Brynjolfsson, Jin, Steffen, and Wan 2022; Oikonomou, 
Pierri, and Timmer, 2023) document the superior performance of companies with work-from-
home capabilities relative to their peers during the pandemic. Our findings corroborate these 
studies by suggesting that newly emerging technologies might continue to play an 
increasingly significant role in allowing for effective, essential communication while face-to-
face interactions retain their special role in facilitating relationship building and tacit 
knowledge transfer.  
3.5.3 Tacit Knowledge 
 Tacit knowledge has long been regarded as those elements of knowledge, insight, and 
so on that individuals have which are ill-defined, uncodified, unpublished, which they 
themselves cannot fully express, and which differ from person to person, but which may to 
some significant degree be shared by innovators and colleagues who have a common 
experience (Polanyi 1967). Our results so far suggest that it is the transfer of tacit knowledge 
that mostly responds to travel time reduction. First, as previously mentioned in Table 5, our 
main effects are the strongest in highly complex technological classes. This result is 
consistent with the notion that specific and tacit knowledge serves as a complement to public 
knowledge in science-based fields, particularly those that are complex in nature (Dosi 1988). 
Second, the citations to new technologies are more responsive to travel time reduction, 
whereas the citations to dated technologies are not. This is consistent with the notion that 
mature technologies are better codified while fresh technologies contain more tacit contents 
(Pisano and Shih 2012). Lastly, travel time reduction increases knowledge diffusion by 
facilitating inventor flow when Internet-enabled substitutes for face-to-face interactions were 
unavailable (e.g., Giroud 2013, Agrawal and Goldfarb 2008, and Panahi et al. 2013).  

Although patent citations reflect the usage of published documents, they also capture 
the diffusion of tacit knowledge. The patent system requires open publication of patents to 
inform inventors what are protected and facilitate latter usage of prior inventions. Yet, 
modern patents often lack transparency in information disclosed. We illustrate this idea 
using two examples. First, take the “Electromagnetic Windshield Wiper System” (patent 
number: US 10,899,267 B2) in appendix B1 as an example, the patent includes a detailed 
description of the mechanical layout of each physical component of the system by including a 
graphic illustration and explanation of the functions and locations of each part. However, 
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detailed answers to questions such as “what angle do electromagnets need to point at”, “the 
required strength level for the spring used in the actuator”, “the power that is needed for 
optimized electromagnetic field”, or “at what speed does this system work/fail” is not provided 
or required in the patent application. But one can easily imagine that in order to build on 
this proposed technology, any future work citing this patent needs to have the answers to the 
aforementioned questions. Because these answers are only available after repeated 
experiments and optimal reconfiguration, this tacit knowledge can only be transferred 
through face-to-face communications or alternative means that allow for close interactions 
via video and audio conferencing.  

Another example is the “Active Materials for Lithium-Ion Batteries” (patent number: 
US 2012/0280435 A1), which proposes a new active material that was previously unused in 
forming a cathode of a lithium battery (included in appendix B2). The patent contains a 
detailed description of the general procedure for generating such a cathode (Figures 1 and 2 
of the patent), but remains vague on many fronts. For instance, in talking about the 
underlying material for the cathode, the patent deliberately uses molecular formulas that are 
obscure. Specifically, the patent talks about 𝐿𝑖1𝑁𝑖)(2(3𝑀𝑛2𝐶𝑜3𝑂. as a potential material but 

does not reveal the values of x and y that would make this substance chemically feasible and 
stable as well as optimal for the purpose of a cathode. Vague languages such as “in certain 
embodiments” are used throughout the patent description. It is likely that the patent 
inventors have no intention of sharing their “secret ingredient” with the general public, and 
this valuable information is only available by talking with or interacting closely with the 
inventors who have run numerous experiments to figure out the optimal substance(s).  

Taken together, we believe that patent citations correspond to the diffusion of tacit 
knowledge at least to a certain degree. The reduced travel time makes face-to-face 
interactions easier, making it less costly for inventors to get together through formal or 
informal social settings to share stories, knowhows, and experiences, leading to higher 
citations between affected CBSA pairs.  

4. Conclusion 
In this paper, we estimate the elasticity of patent citations to between-CBSA travel 

time between CBSAs to study how proximity causally influences knowledge diffusion and in 
turn affects the volume and direction of future innovation. We find that a 20% reduction in 
travel time owing to the introduction of new flight routes increases knowledge flow by 0.5%, 
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which corresponds to an increase of over 15,000 citations at the aggregate level. Better 
connected CBSAs generate more impactful new patents, and also develop more in technology 
areas where its “neighboring” CBSAs in terms of travel time instead of geographical distance 
are active in.   

We find that the increases in citations resulting from travel time reduction are mainly 
knowledge spillovers across organizational boundaries. The effects are particularly strong 
when the knowledge-absorbing entity (citation maker) and the knowledge-diffusing entity 
(citation receiver) are connected through relationships such as joint ventures, block holdings, 
and vertically related supplier-customers. We also find that the increases in citations are 
more pronounced among city pairs located farther away from each other, with higher 
absorptive capacity, in more complex technology classes. Moreover, citations to dated prior 
knowledge are not responsive to these travel time reductions while that to recently developed 
technologies do. These results suggest that the effective learnings of tacit knowledge are more 
responsive to travel time reduction. When we investigate the mechanism, we find evidence 
that our results are primarily driven by increased inventor flow and likely tacit knowledge 
transfer due to more convenient information acquisition. 

Overall, this study expands our understanding of knowledge diffusion across 
metropolitan areas in the U.S. through the lens of travel time reduction that results from the 
introduction of new airline routes. Our findings also underscore the changing dynamics of 
knowledge diffusion through technological advancement and highlight important avenues for 
further research designed to provide more effective policy suggestions for promoting 
knowledge diffusion and innovation.  
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Figure 1: Patent Citations by Locations 

 
Notes: The reported statistics are based on the USPTO patent citations which satisfy the following 
requirements: (1) the citation-giving patents have at least one inventor in a U.S. CBSA, (2) the citation-
giving patents are applied for during 1980 – 2010 and granted by 2014, and the citation-receiving 
patents are applied for during 1976 – 2010 and granted by 2014.  
 

Figure 2. Pairwise Distance Between Citations  

 
Notes. When calculating the average number of backward references, the sample of citation-giving 
patents is restricted to the USPTO patents with at least one U.S. inventor. When calculating the 
pairwise distance in miles between citations, both the citation-giving patents (citing patents) and the 
citation-receiving patents (cited patents) are restricted to the USPTO patents with at least one U.S. 
inventor. Citations to or from patents invented in foreign countries are not considered.  
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Figure 3: Dynamic Effects of New Airline Routes 

 
Notes. We use the log (number of three-year citations+1) as the dependent variable and a sample of 
CBSA pairs that experienced no more than one time of reduction in travel time. All years of the 
relevant CBSA pairs are used in the regression. The period before three years prior to the reduction 
in travel time is used as the reference group and its coefficient is omitted. The period in and after the 
third year post the reduction in travel time is grouped into the last period. The coefficients are 
estimated based on a two-way fixed effects model, with CBSA pair fixed effects and year fixed effects 
controlled for. Robust standard errors clustered at the CBSA-pair level. 
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Table 1. Travel Time Changes  

  Type of Travel Time Change 
 Travel Time Reduction  

Travel Time 
Increase  Indirect 

to Direct 
Indirect to 

Indirect 
Direct to 

Direct 
Direct to 
Indirect 

Roads to 
Flight All  

Number of Changes  13,115 12,942 5,742 2,008 4,076 37,914  20,988 
         

Distance (in miles) 1112.7 1322.7 825.5 1207.4 315.3 1059.5  928.9 
 (590.5) (561.6) (489.4) (579.) (70.1) (613.9)  (601.5) 

Travel time before  6.51 7.96 5.57 7.79 5.17 6.77  5.19 
(in hours) (1.5) (1.5) (1.4) (1.6) (1.1) (1.8)  (1.8) 
Travel time after  5.13 6.66 4.42 6.42 3.75 5.46  6.43 
(in hours) (1.6) (1.4) (1.3) (1.5) (1.1) (1.8)  (1.8) 
∆ travel time (in hours) -1.41 -1.33 -1.17 -1.38 -1.45 -1.35  1.25 
∆ travel time (%) -21.6% -16.7% -21.0% -17.8% -27.9% -19.9%  24.2% 

Notes. A total of 17,407 (15.7%) distinct CBSA pairs experienced only one change in travel time, and 15,424 (13.9%) distinct CBSA pairs 
experienced multiple changes in travel time. The total number of changes is bigger than the number of distinct CBSA pairs that experienced 
some changes in travel time. A “Direct to Direct” itinerary change reduces the between-CBSA travel time by flying from an airport closer to 
the origin CBSA or to an airport closer to the destination CBSA. A “Direct to Indirect” itinerary change reduces travel time when the shorter 
drive time in the new “indirect” itinerary dominates the shorter flight time in the old “direct” itinerary. The sample period is from 1980 and 
2010. 
 

Electronic copy available at: https://ssrn.com/abstract=3851753



	 39	

Table 2. Summary Statistics  

Subsamples: Never  
Treated 

Eventually 
Treated 

Number of Observations 2,349,521 1,091,417 
Distance between CBSA (in miles) 945.75 1051.68 

 (669.08) (615.25) 
One-Way Travel Time between CBSA (in hours) 5.44 6.00 

 (2.08) (1.82) 
Number of 3-Year Patent Citations*  0.92 0.90 

 (16.87) (17.53) 
Number of Patents at Citing CBSA** 378.53 333.00 

 (971.57) (857.86) 
Number of 3-Year Cumulated Patents at Cited CBSA***  1465.92 1295.51 

 (3761.81) (3341.88) 
Notes. The sample period is from 1980 to 2010. Each observation is a CBSA-pair-year cell. Note that 
citations are directional. For example, citations from Chicago to Boston and citations from Boston to 
Chicago indicate knowledge flow in opposite directions. Thus, in any given year, Chicago-to-Boston 
and Boston-to-Chicago appear in data as two distinct CBSA pairs. *The number of citations made by 
patents applied for in year 𝑡 in the citing CBSA, and received by patents applied for between year 𝑡 −
3 and 𝑡 − 1 in the cited CBSA. **The number of patents applied for in year 𝑡 in the citing CBSA. 
***The number of cumulated patents applied for between year 𝑡 − 3 and 𝑡 − 1 in the cited CBSA.  
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Table 3. Reduction in Travel Time Facilitates Knowledge Diffusion 
Dependent Variable Log(Number of 3-year Citations+1)  

(1) (2) (3) (4) 
Log (Distance) -0.057*** 0.036*** 

  
 

(0.002) (0.004) 
  

Log (Travel Time) 
 

-0.179*** -0.025*** -0.014*   
(0.007) (0.006) (0.007) 

Log (Travel Time)t-1 
   

-0.012*     
(0.007) 

Log (Travel Time)t+1 
   

-0.005     
(0.007) 

Log (New Patents in Citing-CBSA+1) 0.096*** 0.096***   
 (0.001) (0.001)   
Log (Patent Stock in Cited-CBSA+1) 0.088*** 0.087***   
 (0.001) (0.001)   
Year FE Y Y 

  

Citing-CBSA FE Y Y 
  

Cited-CBSA FE Y Y 
  

CBSA-pair FE 
  

Y Y 
Citing-CBSA X Year FE 

  
Y Y 

Cited-CBSA X Year FE 
  

Y Y 
Observations 3,440,938 3,440,938 3,440,938 2,908,823 
R-squared 0.262 0.264 0.678 0.631 

Notes. The reported estimates from (1) to (3) are based on a balanced panel from 1980 to 2010. Each observation is a CBSA-pair-year unit. 
For an observation in year 𝑡 with CBSA 𝑖 as the citing CBSA and CBSA 𝑗 as the cited CBSA, the dependent variable is the log	(𝑥 + 1) 
transformation of the number of citations made by patents applied for in year 𝑡 in CBSA 𝑖, and received by prior patents applied for between 
year 𝑡 − 3 and 𝑡 − 1 in CBSA 𝑗. The Patent Counts in Citing-CBSA is the number of patents applied for (and latter granted) in CBSA 𝑖 in year 
𝑡. The Patent Stock in Cited-CBSA is the number of patents applied for in CBSA 𝑗 between year 𝑡 − 3 and 𝑡 − 1. In column (4) we report how 
the contemporaneous travel time, the travel time one year before, and the travel time one year after affect current knowledge diffusion 
respectively. Robust standard errors clustered at the CBSA-pair level are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 4. Heterogeneity - Sources of Citations 

Dep. Var. Log(Number of 3-Year Citations+1) 

Relationship between 
citing patent and cited 
patent: 

Total Same 
Inventor 

Same 
Assignee 

Same 
Firm Other Joint 

Venture 
Merge & 

Acquisitions 
Vertical 

Customers 

Mean 0.908 0.029 0.066 0.070 0.831 0.061 0.010 0.015 
(St. Dev.) (17.06) (1.659) (2.790) (2.899) (14.89) (2.599) (0.669) (0.789)  

(1) (2) (3) (4) (5) (6) (7) (8)   
 

  
 

   

Log(Travel Time) -0.025*** -0.003 -0.003 -0.003 -0.028*** -0.008** -0.004** -0.007*** 
(0.006) (0.002) (0.003) (0.003) (0.006) (0.003) (0.002) (0.002)   

 
  

 
   

CBSA-pair FE Y Y Y Y Y Y Y Y 
Citing-CBSA X Year FE Y Y Y Y Y Y Y Y 
Cited-CBSA X Year FE Y Y Y Y Y Y Y Y 
Observations 3,440,938 3,440,938 3,440,938 3,440,938 3,440,938 3,440,938 3,440,938 3,440,938 
R-squared 0.678 0.372 0.460 0.469 0.676 0.473 0.347 0.385 

Notes. We make use of the assignee disambiguation and inventor disambiguation from PatentsView to track assignee and inventor across 
different patents. And we use the match by Kogan et al. (2017) to link patents to publicly listed firms. In column (2), “same inventor” citations 
include all patent citation pairs where citing patent and cited patent share any inventor. In column (3), “same assignee” citations include all 
patent citation pairs where citing patent and cited patent share any common assignee. In column (4), “same firm” citations include all same-
assignee citations and those whose citing patent and cited patent share a common PERMNO of a publicly listed firm. In column (5), “Other” 
indicates citation pairs that do not fall into any category found from column (2) to column (4).  In column (6) “Joint Venture” citations include 
all patent citation pairs where both the citing patents and the cited patents are linked to some publicly listed firms (PERMNO) and the two 
firms have had joint venture deals in or prior to the year of the application year of the citing patents. In columns (7) and (8), “M&A citations” 
and “Vertical Customers Citations” are defined correspondingly. The sample period ranges from 1980 to 2010. Each observation is a CBSA-
pair-year unit. In all specifications, we take log	(𝑥 + 1) transformation for the number of citations to prior patents in 3-year rolling reference 
windows as the dependent variable. CBSA-pair fixed effects, citing-CBSA fixed effects by year, and cited-CBSA fixed effects by year are 
always controlled for. Robust standard errors clustered at the CBSA-pair level are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 5. Heterogeneity – Distance, Absorptive Capacity, Technology 
Complexity, and Reference Windows 

Dependent Variable Log (Number of 3-Year Citations+1) 
Panel A:  Quartiles of Distance 

P0-P25 P25-P50 P50-P75 P75-P100 
 (1) (2) (3) (4) 

Log (Travel Time) -0.006 -0.013 -0.076*** -0.074*** 
 (0.009) (0.011) (0.016) (0.024) 

Observations 858,731 859,072 858,669 857,305 
R-squared 0.690 0.644 0.662 0.740 
     

Panel B:  Quartiles of Absorptive Capacity of Citing-CBSA 
P0-P25 P25-P50 P50-P75 P75-P100 

 (1) (2) (3) (4) 
Log (Travel Time) 0.004 -0.003 -0.018* -0.045*** 

 (0.006) (0.010) (0.010) (0.014) 
Observations 836,752 837,355 838,085 842,084 
R-squared 0.210 0.399 0.612 0.807 
     

Panel C:  Quartiles of the Technology Complexity of Cited Patents 
P0-P25 P25-P50 P50-P75 P75-P100 

 (1) (2) (3) (4) 
Log (Travel Time) -0.012*** -0.013*** -0.014*** -0.022*** 

 (0.004) (0.004) (0.004) (0.004) 
Observations 3,440,938 3,440,938 3,440,938 3,440,938 
R-squared 0.536 0.601 0.598 0.592 
     

Panel D: 
Alternative Reference Windows 

3-year 6-year 10-year Prior to 1985 
Mean 0.908 2.458 4.782 1.154 
Std. Dev. (17.06) (42.67) (76.36) (11.91) 
  (1) (2) (3) (4) 
Log (Travel Time) -0.025*** -0.022*** -0.014 -0.002 
 (0.006) (0.008) (0.010) (0.006) 
Observations 3,440,938 3,107,944 2,663,952 2,774,950 
R-squared 0.678 0.742 0.784 0.755 
CBSA-pair FE Y Y Y Y 
Citing-CBSA X Year FE Y Y Y Y 
Cited-CBSA X Year FE Y Y Y Y 

Notes. The sample period ranges from 1980 to 2010. Each observation is a CBSA-pair-year unit. 
For Panel A we split the sample into four quartiles according to the between-CBSA distance. For 
Panel B, we use cumulated patents applied for during the fixed window between 1977 and 1985 to 
proxy for the “absorptive capacity” of a citing CBSA and split the sample into four quartiles 
accordingly. For Panel C, we classify citation-receiving patents into four quartiles of technology 
complexity and count the CBSA-pair-year level number of citations to these four sets of patents 
separately. For Panel D, we use three-year citations (col. 1), six-year citations (col. 2), ten-year 
citations (col. 3), and citations to patents applied for between 1977 and 1985 (col. 4) as dependent 
variables. The sample periods corresponding to these dependent variables are from 1980 to 2010 
(col. 1), from 1983 to 2010 (col. 2), from 1987 to 2010 (col. 3), and from 1986 to 2010 (col. 4), 
respectively. In all specifications, we take log	(𝑥 + 1) transformation for the number of citations to 
prior patents in 3-year rolling reference windows as the dependent variable. CBSA-pair fixed 
effects, citing-CBSA fixed effects by year, and cited-CBSA fixed effects by year are always 
controlled for. Robust standard errors clustered at the CBSA-pair level are shown in parentheses. 
*** p<0.01, ** p<0.05, * p<0.1.
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Table 6. The Effects of Travel Time on the Volume and the Direction of New Knowledge Creation 
Dependent Variable Log (Number of 

Patents at the 
Knowledge-

Receiving CBSA+1) 

Log (Citation Weighted 
Number of Patents at the 

Knowledge-Receiving 
CBSA+1) 

Log(Number of Star 
Patents – 

 Top 25 %+1) 

Between-CBSA 
Similarity of 
Technological 

Direction  
  (1) (2) (3) （4） 
         
Log (Travel Time) -0.269*** -0.338*** -0.278*** -0.005**  

(0.046) (0.054) (0.048) (0.002) 
Citing-CBSA FE Y Y Y  
CBSA-pair FE Y Y Y Y 
Citing-CBSA X Year FE    Y 
Cited-CBSA X Year FE Y Y Y Y 
Observations 3,440,938 3,440,938 3,440,938 3,278,027 
R-squared 0.961 0.935 0.939 0.703 

Notes. The reported estimates are based on a balanced panel from 1980 to 2010. Each observation is a CBSA-pair-year unit. The dependent variable 
used in column (1) is the log(𝑥 + 1)	transformed number of patents at the knowledge-receiving CBSA. In column (2), we weigh the number of patents at 
each knowledge-receiving CBSA using the total number of forward citations these patents garnered by 2010 and then use its log(𝑥 + 1)	transformation 
as the dependent variable. In column (3), we use the log(𝑥 + 1)	transformed number of high-impact patents at the knowledge-receiving CBSA as the 
dependent variables. High-impact patents are defined as those ranking top 25% among patents applied for in the same year based on their total forward 
citations garnered by 2010. In column (4), the dependent variable is the inner product of the patent-class vectors between two CBSAs for patents newly 
applied for per year. Travel Time in Hours indicates the one-way travel time between CBSAs. Robust standard errors clustered at the CBSA-pair level 
are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 7. Inventors’ Cross-CBSA Relocation and Collaboration 

Dependent Variable Dm(Inventor 
Relocation) 

Log (Number 
of Citations+1) 

Dm(Between-
CBSA 

Collaboration) 

Log (Number 
of Citations+1) 

Log (Number 
of Citations+1) 

  (1) (2) (3) (4) (5) 
            
Log (Travel Time) -0.010*** -0.024*** -0.001 -0.025*** -0.024***  

(0.003) (0.006) (0.004) (0.006) (0.006) 
Dm(Inventor Relocation) 

 
0.121*** 

  
0.109***   

(0.002) 
  

(0.002) 
Dm(Between-CBSA Collaboration) 

 
 

 
0.119*** 0.109***   

 
 

(0.002) (0.002) 
CBSA-pair FE Y Y Y Y Y 
Citing-CBSA X Year FE Y Y Y Y Y 
Cited-CBSA X Year FE Y Y Y Y Y 
Observations 3,440,938 3,440,938 3,440,938 3,440,938 3,440,938 
R-squared 0.364 0.679 0.446 0.680 0.681 

Notes. Dm(Inventor Relocation) equals to one when we observe at least one inventor relocation between a CBSA pair in a given year and zero otherwise. 
To identify inventor relocation, we make use of the inventor disambiguation provided by PatentsView, track a same inventor who appears on multiple 
patents with different inventor addresses, and use the application year of the subsequent patent as the year when the relocation occurs. Results are 
similar when we use the application year of the former patent, or use the midpoint between the former patent and the subsequent patent as the year of 
inventor relocation. Dm(Between-CBSA Collaboration) equals to one when we observe at least one patent with inventors from both CBSAs of a CBSA 
pair in a given year.  While some 42.8% of distinct CBSA pairs have ever had inventor collaboration and 43.3% have ever experienced inventor relocation, 
both variables take non-zero values in only about 5% of our CBSA-pair-year level observations. In all specifications, CBSA-pair fixed effects, citing-
CBSA fixed effects by year, and cited-CBSA fixed effects by year are controlled for. Robust standard errors clustered at the CBSA-pair level are shown 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table 8. Effects by Period and Internet Penetration 
Dependent Variable Log (Number of Three-Year Citations+1) 
Sample Years 1980-1995 1996-2010 1999-2008 

 (1) (2) (3) (4) (5) 
Log (Travel Time) -0.023*** 0.007 0.019* -0.026**  

 (0.006) (0.009) （0.011） (0.011)  
Log(Dyadic Internet Availability+1)    0.072***  

    (0.007)  
Log (Travel Time) X     0.034***  
    Log(Dyadic Internet Availability+1)    (0.002)  
Log (Travel Time) X      
    Dm(Dyadic Internet Availability ∈ [0,1))     -0.022** 

     (0.011) 
    Dm(Dyadic Internet Availability ∈ [1,2))     -0.009 

     (0.011) 
    Dm(Dyadic Internet Availability ∈ [2,3))     0.019* 

     (0.011) 
    Dm(Dyadic Internet Availability ≥ 3)     0.041*** 

     (0.011) 
CBSA-pair FE Y Y Y Y Y 
Citing-CBSA X Year FE Y Y Y Y Y 
Cited-CBSA X Year FE Y Y Y Y Y 
Observations 1,775,968 1,664,970 1,109,980 1,109,980 1,109,980 
R-squared 0.667 0.750 0.773 0.773 0.773 

Notes. In column (1) we use the period of 16 years between 1980 and 1995. In column (2) we use the period between 1996 and 2010. In column 
(3), column (4), and column (5) we use the period between 1999 and 2008, when the data on the zip code level number of commercial internet 
providers are available from Form 477 (Downloaded at https://www.fcc.gov/form-477-data-zip-codes-number-high-speed-service-providers). 
Dm(Dyadic Internet Availability ∈[0,1)) is an indicator variable that takes the value of one if neither of the two CBSAs of a given CBSA pair 
has one or more internet providers per zips-code on average, and zero otherwise. Dm(Dyadic Internet Availability ∈[1,2)) is an indicator 
variable that takes the value of one if the two CBSAs of a given CBSA pair both have at least one internet providers but neither has more 
than two internet providers per zips-code on average, and zero otherwise. The other indicator variables for internet availability are defined 
analogously. We average the zip-code level number of internet service companies at the CBSA level, and take the lower number of service 
providers of the two CBSAs of each CBSA pair as the measure of dyadic internet availability at the CBSA-pair-year level. In all specifications, 
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CBSA-pair fixed effects, citing-CBSA fixed effects by year, and cited-CBSA fixed effects by year are controlled for. Robust standard errors 
clustered at the CBSA-pair level are shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Online Appendix for “Proximity and Knowledge Spillovers: Evidence from 
the Introduction of New Airline Routes” 

 

Online Appendix A contains supplementary figures and tables. Online Appendix B 
contains two actual patent documents. The first patent is “Electromagnetic 
Windshield Wiper System” (patent number: US 10,899,267 B2) as Appendix B1; The 
second patent is “Active Materials for Lithium-Ion Batteries” (patent number: US 
2012/0280435 A1) as Appendix B2.  
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Online Appendix A 
Figure A1. Inventors’ Spatial Distribution Within CBSAs 

(A) Inventors’ Distances to CBSA Centroids 

 
Notes. The distance from inventors to the centroid of their CBSAs increased only slightly over the 
sample period. The average distance increased from 18 miles or so in 1977 to 21 miles in 2010, a 
3-mile difference. The 75th percentile increased by less than 5 miles.  

 
(B) Inventors’ Distances to Airports 

 
Notes. The distance from inventors to the airports of their CBSAs decreased slightly over the 
sample period. The average distance decreased from 36 miles in 1977 to 32 miles in 2010, a 4-mile 
difference. The 75th percentile decreased by about 1 mile.  
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Figure A2. Travel Time and Knowledge Diffusion, by Technology Class 
(A) 

 
(B) 

 
Notes. Each point is derived from a separate regression with the sample restricted to citations made 
by patents of the labeled technology class. The dependent variable is the log	(𝑥 + 1) transformation for 
the number of citations to prior patents in 3-year rolling reference windows as the dependent variable. 
Control variables include between-CBSA technological proximity, CBSA-pair fixed effects, citing-
CBSA fixed effects by year, and cited-CBSA fixed effects by year. Robust standard errors are clustered 
at the CBSA-pair level. The vertical axis indicates the coefficient of log (Travel Time). Figures 4(A) 
and 4(B) present the same set of regression coefficients. The horizontal axis in Figure 4(A) indicates 
the share of backward references a patent class makes to prior patents that were applied for within 
three years previously. The horizontal axis in Figure 4(B) indicates the share of backward references 
a patent class makes to prior patents that were applied for more than 20 years previously. 
  

Electronic copy available at: https://ssrn.com/abstract=3851753



	 4	

Figure A3: The Distribution of the Dyadic Internet Availability. 

 
Notes: We average the zip-code level number of internet service companies at the CBSA level, and take 
the lower number of service providers of the two CBSAs of each CBSA pair as the measure of dyadic 
internet availability at the CBSA-pair-year level. 
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Table A1: Estimation Using Alternative Clustered Standard Errors 

Dependent Variable Log (Number of 3-year Citations+1) 
Standard Errors Clustered At: CBSA Pair Citing CBSA Cited CBSA 
  (1) (2) (3) 
Log (Travel Time) -0.025*** -0.025*** -0.025*** 

 (0.006) (0.007) (0.006) 
CBSA-pair FE Y Y Y 
Citing-CBSA X Year FE Y Y Y 
Cited-CBSA X Year FE Y Y Y 
Observations 3,440,938 3,440,938 3,440,938 
R-squared 0.678 0.678 0.678 
Notes. The reported estimates from (1) to (3) are based on a balanced panel from 1980 to 2010. Each observation 
is a CBSA-pair-year unit. For an observation in year 𝑡 with CBSA 𝑖 as the citing CBSA and CBSA 𝑗 as the cited 
CBSA, the dependent variable is the log	(𝑥 + 1) transformation of the number of citations made by patents applied 
for in year 𝑡 in CBSA 𝑖, and received by prior patents applied for between year 𝑡 − 3 and 𝑡 in CBSA 𝑗. Statistical 
significances are indicated by: *** p<0.01, ** p<0.05, * p<0.1. 
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Table A2. Discrete Difference-in-Differences 

Dependent Variable Log(Number of 3-year Citations+1)  
(1) (2)    

Dm (Post Travel Time Reduction) 0.046*** 
 

 
(0.006) 

 

Travel Time Reduction Year (-3)  0.001 
  (0.006) 
Travel Time Reduction Year (-2)  0.009  

 (0.007) 
Travel Time Reduction Year (-1)  0.007  

 (0.007) 
Travel Time Reduction Year (0)  0.015**  

 (0.007) 
Travel Time Reduction Year (1)  0.019***  

 (0.007) 
Travel Time Reduction Year (2)  0.023***  

 (0.007) 
Travel Time Reduction Year (3+) 

 
0.059***  

 (0.007) 
CBSA-pair FE Y Y 
Year FE N Y 
Citing-CBSA X Year FE Y N 
Cited-CBSA X Year FE Y N 
Observations 2,588,996 2,588,996 
R-squared 0.633 0.633 

Notes. We restrict the sample to CBSA pairs that have experienced no more than one reduction in 
travel time. Dm (Post Travel Time Reduction) equals one after the travel time decreased by more than 
1.5 hours as a result of new flight routes and zero otherwise. In column (2), we replace Dm (Post Travel 
Time Reduction) with six different dummies: Travel Time Reduction Year (-3), Travel Time Reduction 
Year (-2), Travel Time Reduction Year (-1), Travel Time Reduction Year (0), Travel Time Reduction 
Year (1), Travel Time Reduction Year (2), Travel Time Reduction Year (3+), where Travel Time 
Reduction Year (-3) is a dummy that equals one if a CBSA pair will experience a major travel time 
reduction (i.e., 1.5 hours or more in reduction) in three years. Travel Time Reduction Year (-2) is a 
dummy that equals one if a CBSA pair will experience a major travel time reduction two years from 
now. Travel Time Reduction Year (-1) is a dummy that equals one if a CBSA pair will experience a 
major travel time reduction one year from now. Travel Time Reduction Year (0) is a dummy that equals 
one in the year when a CBSA pair experience a major travel time reduction. In a similar vein, Travel 
Time Reduction Year (1) and Travel Time Reduction Year (2) are dummies that equal one if a CBSA-
pair experiences a major travel time reduction one year ago and two years ago, respectively. Finally, 
Travel Time Reduction Year (3+) is a dummy that equals one if a CBSA pair experiences a major travel 
reduction more than three years ago. Robust standard errors clustered at the CBSA-pair level are 
shown in parentheses. *** p<0.01, ** p<0.05, * p<0.1. 
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Table A3: Robustness Checks 

Panel A: Hub Openings 
Dependent Variable Log (Number of 3-Year Citations+1) 

Sample Full Ever Hub 
Treated Full 

  (1) (2) (3) 
Log (Travel Time) -0.021*** -0.061*** -0.047***  

(0.006) (0.023) (0.017) 
Hub Treated * Log (Travel Time) -0.029*    

(0.018)   
Observations 3,440,938 211,203 3,440,938 
R-squared 0.676 0.726 0.676 

    
Panel B: Alternative Specifications 
Model OLS Poisson OLS 

Dependent Variable 

3-Year Number of Citations 
Inverse 

Hyperbolic 
Transformed 

Count Count 

  (1) (2) (3) 
Log (Travel Time) -0.031*** -0.202*** -1.260***  

（0.008） (0.048) (0.434) 
Observations 3,440,938 3,440,938 3,440,938 
R-squared 0.665 NA 0.504 
CBSA-pair FE Y Y Y 
Citing-CBSA X Year FE Y Y Y 
Cited-CBSA X Year FE Y Y Y 

Notes. In Panel A, Hub Treated is a dummy indicating that a change in travel time involves airline 
routes that are introduced in the same year when the origin, destination, or any connecting airport 
becomes a new hub. In column (3) of panel A, Log(Travel Time) is redefined to be the actual travel 
time only for Hub-Treated pairs, and to be the 1980 initial travel time for all other pairs. In Panel B 
column (1), we take the inverse hyperbolic transformation for the number of 3-year citations as the 
dependent variable. In columns (2) and (3) of Panel B, we use the number of 3-year citations as the 
dependent variable directly without any transformation. Column (2) presents the result of a Poisson 
specification and column (3) presents the result of an OLS specification. In all specifications, CBSA-
pair fixed effects, citing-CBSA fixed effects by year, and cited-CBSA fixed effects by year are controlled 
for. Robust standard errors clustered at the CBSA-pair level are shown in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. 
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