• 中文

Yang Lu   Assistant Professor

Yang Lu received the B.Sc. and M.Sc. degrees in software engineering from the University of Macau, Macau, China, in 2012 and 2014, respectively, and the Ph.D. degree in computer science from Hong Kong Baptist University, Hong Kong, China, in 2019. He is currently an Assistant Professor with the Department of Computer Science and Technology, School of Informatics, Xiamen University, Xiamen, Chin...Detials

Research Focus Current position: Yang Lu's Homepage > Research Focus

长尾学习

长尾学习(Long-tail Learning)是人工智能领域的一个重要研究方向,主要关注于处理数据分布中呈现出长尾(long tail)现象的问题。在数据分布中,长尾现象指的是一种非常常见的情况,即少数类别的样本数量远远少于大多数类别的样本数量。这种分布现象在许多现实世界的问题中都存在,如商品销售、自然语言处理中的词频分布、图像识别中的类别分布等。

长尾学习的目标是克服数据分布中长尾部分的挑战,以实现更好的模型性能和预测准确度。这种情况下,传统的机器学习算法可能会面临问题,因为它们更容易在样本数量较多的类别上表现出色,而在样本数量较少的类别上表现较差。


相关成果:

[1] Yang Lu, Yiliang Zhang, Bo Han, Yiu-ming Cheung, Hanzi Wang, “Label-Noise Learning with Intrinsically Long-Tailed Data,” in Proceedings of IEEE/CVF International Conference of Computer Vision (ICCV), Paris, France, October 2-6, 2023. (CCF A)

[2] Yan Jin, Mengke Li, Yang Lu*, Yiu-ming Cheung, and Hanzi Wang, “Long-Tailed Visual Recognition via Self-Heterogeneous Integration with Knowledge Excavation,” in Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 23695-23704, Vancouver, Canada, June 18-22, 2023. (CCF A)

[3] Mengke Li, Yiu-ming Cheung, and Yang Lu, “Long-tailed Visual Recognition via Gaussian Clouded Logit Adjustment” in Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.6929-6938 , New Orleans, Louisiana, June 21-24, 2022. (CCF A)

[4] Yang Lu, Yiu-ming Cheung, and Yuan Yan Tang, “Self-Adaptive Multi-Prototype-based Competitive Learning Approach: A k-means-type Algorithm for Imbalanced Data Clustering,” IEEE Transactions on Cybernetics (TCYB), vol. 51, no. 3, pp. 1598-1612, 2021. (JCR 1/ CCF B)

[5] Yang Lu, Yiu-ming Cheung, and Yuan Yan Tang, “Bayes Imbalance Impact Index: A Measure of Class Imbalanced Dataset for Classification Problem,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 31, no. 9, pp. 3525-3539, 2020. (JCR 1/ CCF B)

[6] Yang Lu, Yiu-ming Cheung, and Yuan Yan Tang, “Adaptive Chunk-based Dynamic Weighted Majority for Imbalanced Data Streams with Concept Drift,” IEEE Transactions on Neural Networks and Learning Systems (TNNLS), vol. 31, no. 8, pp. 2764-2778, 2020. (JCR 1/ CCF B)