• 中文

Yang Lu   Assistant Professor

Yang Lu received the B.Sc. and M.Sc. degrees in software engineering from the University of Macau, Macau, China, in 2012 and 2014, respectively, and the Ph.D. degree in computer science from Hong Kong Baptist University, Hong Kong, China, in 2019. He is currently an Assistant Professor with the Department of Computer Science and Technology, School of Informatics, Xiamen University, Xiamen, Chin...Detials

Research Focus Current position: Yang Lu's Homepage > Research Focus

联邦学习

联邦学习(Federated Learning)是人工智能领域的一项前沿研究方向,旨在解决多个参与方拥有分布式数据,又不方便集中存储或共享数据的问题。在联邦学习中,每个参与方(如移动设备、边缘服务器、个人设备等)都持有自己的本地数据,而模型的训练在本地进行,仅通过交换模型参数的方式进行信息共享,从而实现全局模型的训练。

其中,联邦学习中的数据异构指的是在同一问题领域内,不同数据之间在特征分布、数据结构、性质等方面存在显著差异的情况。换句话说,数据异构问题出现在不同数据源、不同数据集或不同时间点收集的数据之间存在差异,这些差异可能会影响数据的处理、分析和建模过程。


相关成果:

[1] Xinyi Shang, Yang Lu*, Gang Huang, and Hanzi Wang, “Federated Learning on Heterogeneous and Long-Tailed Data via Classifier Re-Training with Federated Features,” in Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp.2218-2224, Vienna, Austria, July 23-29, 2022. (CCF A)

[2] Xinyi Shang, Yang Lu*, Yiu-ming Cheung, and Hanzi Wang, “FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated Distillation,” in Proceedings of IEEE International Conference on Multimedia and Expo (ICME), pp.1-6, Taipei, Taiwan, July 18-22, 2022. (CCF B)

[3] Yang Lu, Pinxin Qian, Gang Huang, and Hanzi Wang,  “Personalized Federated Learning on Long-Tailed Data via Adversarial Feature Augmentation,” in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Greece, June 4-10, 2023. (CCF B)

[4] Pinxin Qian, Yang Lu*, and Hanzi Wang, “Long-Tailed Federated Learning via Aggregated Meta Mapping” in Proceedings of IEEE International Conference on Image Processing (ICIP), Kuala Lumpur, Malaysia, October 8-11, 2023. (CCF C)